74 research outputs found

    Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae

    Get PDF
    Macroalgae are the major habitat-forming organisms in many coastal temperate and subtropical marine systems. Although climate change has been identified as a major threat to the persistence of macroalgal beds, the combined effects of ocean warming and ocean acidification on algal performance are poorly understood. Here we investigate the effects of increased temperature and acidification on the growth, calcification and nutritional content of 6 common subtropical macroalgae; Sargassum linearifolium, Ulva sp., Amphiroa anceps, Corallina officinalis, Delisea pulchra and Laurencia decussata. Algae were reared in a factorial cross of 3 temperatures (23°C [ambient], 26°C and 28°C) and 3 pH levels (8.1 [ambient], 7.8 and 7.6) for 2 wk. The highest (28°C) temperature decreased the growth of all 6 macroalgal species, irrespective of the pH levels. In contrast, the effect of decreased pH on growth was variable. The growth of Ulva sp. and C. officinalis increased, L. decussata decreased, while the remaining 3 species were unaffected. Interestingly, the differential responses of macroalgae to ocean acidification were unrelated to whether or not a species was a calcifying alga, or their carbon-uptake mechanism—2 processes that are predicted to be sensitive to decreased pH. The growth of the calcifying algae (C. officinalis and A. anceps) was not affected by reduced pH but calcification of these 2 algae was reduced when exposed to a combination of reduced pH and elevated temperature. The 3 species capable of uptake of bicarbonate, S. linearifolium, L. decussata and Ulva sp., displayed positive, negative and neutral changes in growth, respectively, in response to reduced pH. The C:N ratio for 5 of the 6 species was unaffected by either pH or temperature. The consistent and predictable negative effects of temperature on the growth and calcification of subtropical macroalgae suggests that this stressor poses a greater threat to the persistence of subtropical macroalgal populations than ocean acidification under ongoing and future climate change

    Tumor‐stroma interactions differentially alter drug sensitivity based on the origin of stromal cells

    Get PDF
    Due to tumor heterogeneity, most believe that effective treatments should be tailored to the features of an individual tumor or tumor subclass. It is still unclear, however, what information should be considered for optimal disease stratification, and most prior work focuses on tumor genomics. Here, we focus on the tumor microenvironment. Using a large‐scale coculture assay optimized to measure drug‐induced cell death, we identify tumor–stroma interactions that modulate drug sensitivity. Our data show that the chemo‐insensitivity typically associated with aggressive subtypes of breast cancer is not observed if these cells are grown in 2D or 3D monoculture, but is manifested when these cells are cocultured with stromal cells, such as fibroblasts. Furthermore, we find that fibroblasts influence drug responses in two distinct and divergent manners, associated with the tissue from which the fibroblasts were harvested. These divergent phenotypes occur regardless of the drug tested and result from modulation of apoptotic priming within tumor cells. Our study highlights unexpected diversity in tumor–stroma interactions, and we reveal new principles that dictate how fibroblasts alter tumor drug responses

    The Current States, Challenges, Ongoing Efforts, and Future Perspectives of Pharmaceutical Excipients in Pediatric Patients in Each Country and Region

    Get PDF
    A major hurdle in pediatric formulation development is the lack of safety and toxicity data on some of the commonly used excipients. While the maximum oral safe dose for several kinds of excipients is known in the adult population, the doses in pediatric patients, including preterm neonates, are not established yet due to the lack of evidence-based data. This paper consists of four parts: (1) country-specific perspectives in different parts of the world (current state, challenges in excipients, and ongoing efforts) for ensuring the use of safe excipients, (2) comparing and contrasting the country-specific perspectives, (3) past and ongoing collaborative efforts, and (4) future perspectives on excipients for pediatric formulation. The regulatory process for pharmaceutical excipients has been developed. However, there are gaps between each region where a lack of information and an insufficient regulation process was found. Ongoing efforts include raising issues on excipient exposure, building a region-specific database, and improving excipient regulation; however, there is a lack of evidence-based information on safety for the pediatric population. More progress on clear safety limits, quantitative information on excipients of concern in the pediatric population, and international harmonization of excipients’ regulatory processes for the pediatric population are required

    Histone arginine methylation in cocaine action in the nucleus accumbens

    Get PDF
    Repeated cocaine exposure regulates transcriptional regulation within the nucleus accumbens (NAc), and epigenetic mechanisms - such as histone acetylation and methylation on Lys residues - have been linked to these lasting actions of cocaine. In contrast to Lys methylation, the role of histone Arg (R) methylation remains underexplored in addiction models. Here we show that protein-R-methyltransferase-6 (PRMT6) and its associated histone mark, asymmetric dimethylation of R2 on histone H3 (H3R2me2a), are decreased in the NAc of mice and rats after repeated cocaine exposure, including self-administration, and in the NAc of cocaine-addicted humans. Such PRMT6 down-regulation occurs selectively in NAc medium spiny neurons (MSNs) expressing dopamine D2 receptors (D2-MSNs), with opposite regulation occurring in D1-MSNs, and serves to protect against cocaine-induced addictive-like behavioral abnormalities. Using ChIP-seq, we identified Src kinase signaling inhibitor 1 (Srcin1; also referred to as p140Cap) as a key gene target for reduced H3R2me2a binding, and found that consequent Srcin1 induction in the NAc decreases Src signaling, cocaine reward, and the motiv ation to self-administer cocaine. Taken together, these findings suggest that suppression of Src signaling in NAc D2-MSNs, via PRMT6 and H3R2me2a down-regulation, functions as a homeostatic brake to restrain cocaine action, and provide novel candidates for the development of treatments for cocaine addiction. Keywords: histone arginine (R) methylation; drug addiction; medium spiny neurons; ChIP-seq; Sr

    Genome-wide Analysis of Simultaneous GATA1/2, RUNX1, FLI1, and SCL Binding in Megakaryocytes Identifies Hematopoietic Regulators

    Get PDF
    SummaryHematopoietic differentiation critically depends on combinations of transcriptional regulators controlling the development of individual lineages. Here, we report the genome-wide binding sites for the five key hematopoietic transcription factors—GATA1, GATA2, RUNX1, FLI1, and TAL1/SCL—in primary human megakaryocytes. Statistical analysis of the 17,263 regions bound by at least one factor demonstrated that simultaneous binding by all five factors was the most enriched pattern and often occurred near known hematopoietic regulators. Eight genes not previously appreciated to function in hematopoiesis that were bound by all five factors were shown to be essential for thrombocyte and/or erythroid development in zebrafish. Moreover, one of these genes encoding the PDZK1IP1 protein shared transcriptional enhancer elements with the blood stem cell regulator TAL1/SCL. Multifactor ChIP-Seq analysis in primary human cells coupled with a high-throughput in vivo perturbation screen therefore offers a powerful strategy to identify essential regulators of complex mammalian differentiation processes

    Comparative Transmissibility of SARS-CoV-2 Variants Delta and Alpha in New England, USA

    Get PDF
    The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant quickly rose to dominance in mid-2021, displacing other variants, including Alpha. Studies using data from the United Kingdom and India estimated that Delta was 40-80% more transmissible than Alpha, allowing Delta to become the globally dominant variant. However, it was unclear if the ostensible difference in relative transmissibility was due mostly to innate properties of Delta\u27s infectiousness or differences in the study populations. To investigate, we formed a partnership with SARS-CoV-2 genomic surveillance programs from all six New England US states. By comparing logistic growth rates, we found that Delta emerged 37-163% faster than Alpha in early 2021 (37% Massachusetts, 75% New Hampshire, 95% Maine, 98% Rhode Island, 151% Connecticut, and 163% Vermont). We next computed variant-specific effective reproductive numbers and estimated that Delta was 58-120% more transmissible than Alpha across New England (58% New Hampshire, 68% Massachusetts, 76% Connecticut, 85% Rhode Island, 98% Maine, and 120% Vermont). Finally, using RT-PCR data, we estimated that Delta infections generate on average ∌6 times more viral RNA copies per mL than Alpha infections. Overall, our evidence indicates that Delta\u27s enhanced transmissibility could be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on the underlying immunity and behavior of distinct populations

    Comparative transmissibility of SARS-CoV-2 variants Delta and Alpha in New England, USA.

    Get PDF
    The SARS-CoV-2 Delta variant rose to dominance in mid-2021, likely propelled by an estimated 40%-80% increased transmissibility over Alpha. To investigate if this ostensible difference in transmissibility is uniform across populations, we partner with public health programs from all six states in New England in the United States. We compare logistic growth rates during each variant\u27s respective emergence period, finding that Delta emerged 1.37-2.63 times faster than Alpha (range across states). We compute variant-specific effective reproductive numbers, estimating that Delta is 63%-167% more transmissible than Alpha (range across states). Finally, we estimate that Delta infections generate on average 6.2 (95% CI 3.1-10.9) times more viral RNA copies per milliliter than Alpha infections during their respective emergence. Overall, our evidence suggests that Delta\u27s enhanced transmissibility can be attributed to its innate ability to increase infectiousness, but its epidemiological dynamics may vary depending on underlying population attributes and sequencing data availability

    Long Range Plan: Dense matter theory for heavy-ion collisions and neutron stars

    Full text link
    Since the release of the 2015 Long Range Plan in Nuclear Physics, major events have occurred that reshaped our understanding of quantum chromodynamics (QCD) and nuclear matter at large densities, in and out of equilibrium. The US nuclear community has an opportunity to capitalize on advances in astrophysical observations and nuclear experiments and engage in an interdisciplinary effort in the theory of dense baryonic matter that connects low- and high-energy nuclear physics, astrophysics, gravitational waves physics, and data scienceComment: 70 pages, 3 figures, White Paper for the Long Range Plan for Nuclear Scienc

    Characterization of transcriptional networks in blood stem and progenitor cells using high-throughput single-cell gene expression analysis

    Get PDF
    Cellular decision-making is mediated by a complex interplay of external stimuli with the intracellular environment, in particular transcription factor regulatory networks. Here we have determined the expression of a network of 18 key haematopoietic transcription factors in 597 single primary blood stem and progenitor cells isolated from mouse bone marrow. We demonstrate that different stem/progenitor populations are characterized by distinctive transcription factor expression states, and through comprehensive bioinformatic analysis reveal positively and negatively correlated transcription factor pairings, including previously unrecognized relationships between Gata2, Gfi1 and Gfi1b. Validation using transcriptional and transgenic assays confirmed direct regulatory interactions consistent with a regulatory triad in immature blood stem cells, where Gata2 may function to modulate cross-inhibition between Gfi1 and Gfi1b. Single-cell expression profiling therefore identifies network states and allows reconstruction of network hierarchies involved in controlling stem cell fate choices, and provides a blueprint for studying both normal development and human disease
    • 

    corecore