11 research outputs found

    Picosecond electric-field-induced threshold switching in phase-change materials

    Full text link
    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag4_4In3_3Sb67_{67}Te26_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on sub-picosecond time-scales - faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.Comment: 6 pages manuscript with 3 figures and 8 pages supplementary materia

    Optimization of Nonlinear Turbulence in Stellarators

    Full text link
    We present new stellarator equilibria that have been optimized for reduced turbulent transport using nonlinear gyrokinetic simulations within the optimization loop. The optimization routine involves coupling the pseudo-spectral GPU-native gyrokinetic code GX with the stellarator equilibrium and optimization code DESC. Since using GX allows for fast nonlinear simulations, we directly optimize for reduced nonlinear heat fluxes. To handle the noisy heat flux traces returned by these simulations, we employ the simultaneous perturbation stochastic approximation (SPSA) method that only uses two objective function evaluations for a simple estimate of the gradient. We show several examples that optimize for both reduced heat fluxes and good quasisymmetry as a proxy for low neoclassical transport. Finally, we run full transport simulations using T3D to evaluate the changes in the macroscopic profiles

    Deep-Subwavelength Semiconductor Nanowire Surface Plasmon Polariton Couplers

    No full text
    The increased importance of plasmonic devices has prompted a sizable research activity directed toward the development of ultracompact and high-performance couplers. Here, we present a novel scheme for efficient, highly localized, and directional sourcing of surface plasmon polaritons (SPPs) that relies on the excitation of leaky mode optical resonances supported by high-refractive index, semiconductor nanowires. High coupling efficiencies are demonstrated via finite difference frequency domain simulations and experimentally by leakage radiation microscopy. This efficiency is quantified by means of a coupling cross section, the magnitude of which can exceed twice the geometric cross section of the nanowire by exploiting its leaky resonant modes. We provide intuition into why the SPP coupling via certain wire modes is more effective than others based on their symmetry properties. Furthermore, we provide an example showing that dielectric scatterers may perform as well as metallic scatterers in coupling to SPPs

    Rehabilitation outcome following war-related below-knee amputation in Kosovo: observational retrospective study

    No full text
    Glass-forming materials are employed in information storage technologies making use of the transition between a disordered (amorphous) and an ordered (crystalline) state. With increasing temperature, the crystal growth velocity of these phase-change materials becomes so fast that prior studies have not been able to resolve these crystallization dynamics. However, crystallization is the time-limiting factor in the write speed of phase-change memory devices. Here, for the first time, we quantify crystal growth velocities up to the melting point using the relaxation of photoexcited carriers as an ultrafast heating mechanism. During repetitive femtosecond optical excitation, each pulse enables dynamical evolution for tens of picoseconds before the intermediate atomic structure is frozen-in as the sample rapidly cools. We apply this technique to Ag4In3Sb67Te26Ag_{4}In_{3}Sb_{67}Te_{26} (AIST) and compare the dynamics of as-deposited and application-relevant melt-quenched glass. Both glasses retain their different kinetics even in the supercooled liquid state, thereby revealing differences in their kinetic fragilities. This approach enables the characterization of application-relevant properties of phase-change materials up to the melting temperature, which has not been possible before
    corecore