5 research outputs found

    Phosphorylation of p53 by TAF1 inactivates p53-dependent transcription in the DNA damage response.

    No full text
    While p53 activation has long been studied, the mechanisms by which its targets genes are restored to their preactivation state are less clear. We report here that TAF1 phosphorylates p53 at Thr55, leading to dissociation of p53 from the p21 promoter and inactivation of transcription late in the DNA damage response. We further show that cellular ATP level might act as a molecular switch for Thr55 phosphorylation on the p21 promoter, indicating that TAF1 is a cellular ATP sensor. Upon DNA damage, cells undergo PARP-1-dependent ATP depletion, which is correlated with reduced TAF1 kinase activity and Thr55 phosphorylation, resulting in p21 activation. As cellular ATP levels recover, TAF1 is able to phosphorylate p53 on Thr55, which leads to dissociation of p53 from the p21 promoter. ChIP-sequencing analysis reveals p53 dissociates from promoters genome wide as cells recover from DNA damage, suggesting the general nature of this mechanism

    A specific PP2A regulatory subunit, B56γ, mediates DNA damage-induced dephosphorylation of p53 at Thr55

    No full text
    Protein phosphatase 2A (PP2A) has been implicated to exert its tumor suppressive function via a small subset of regulatory subunits. In this study, we reported that the specific B regulatory subunits of PP2A B56γ1 and B56γ3 mediate dephosphorylation of p53 at Thr55. Ablation of the B56γ protein by RNAi, which abolishes the Thr55 dephosphorylation in response to DNA damage, reduces p53 stabilization, Bax expression and cell apoptosis. To investigate the molecular mechanisms, we have shown that the endogenous B56γ protein level and association with p53 increase after DNA damage. Finally, we demonstrate that Thr55 dephosphorylation is required for B56γ3-mediated inhibition of cell proliferation and cell transformation. These results suggest a molecular mechanism for B56γ-mediated tumor suppression and provide a potential route for regulation of B56γ-specific PP2A complex function
    corecore