24 research outputs found

    Coupled dark energy: a dynamical analysis with complex scalar field

    Get PDF
    The dynamical analysis for coupled dark energy with dark matter is presented, where a complex scalar field is taken into account and it is considered in the presence of a barothropic fluid. We consider three dark energy candidates: quintessence, phantom and tachyon. The critical points are found and their stabilities analyzed, leading to the three cosmological eras (radiation, matter and dark energy), for a generic potential. The results presented here enlarge the previous analyses found in the literature.Comment: 9 pages, version accepted for publication in EPJC. arXiv admin note: text overlap with arXiv:1505.0324

    Dynamical analysis for a vector-like dark energy

    Get PDF
    In this paper we perform a dynamical analysis for a vector field as a candidate for the dark energy, in the presence of a barothropic fluid. The vector is one component of the so-called cosmic triad, which is a set of three identical copies of an abelian field pointing mutually in orthogonal directions. In order to generalize the analysis, we also assumed the interaction between dark energy and the barotropic fluid, with a phenomenological coupling. Both matter and dark energy eras can be successfully described by the critical points, indicating that the dynamical system theory is a viable tool to analyze asymptotic states of such cosmological models.Comment: 6 pages, 3 figures, version to appear in EPJ

    Cosmological tracking solution and the Super-Higgs mechanism

    Get PDF
    In this paper we argue that minimal supergravity with flat K\"ahler metric and a power-law superpotential can relate the Super-Higgs mechanism for the local spontaneous supersymmetry breaking and the cosmological tracking solution, leading in turn to a late-time accelerated expansion of the universe and alleviating the coincidence problem.Comment: 5 pages, 1 figure, minor corrections, to appear in EPJ

    Interacting Dark Energy: Possible Explanation for 21-cm Absorption at Cosmic Dawn

    Full text link
    A recent observation points to an excess in the expected 21-cm brightness temperature from cosmic dawn. In this paper, we present an alternative explanation of this phenomenon, an interaction in the dark sector. Interacting dark energy models have been extensively studied recently and there is a whole variety of such in the literature. Here we particularize to a specific model in order to make explicit the effect of an interaction.Comment: 5 pages, 2 figures. Discussion improved, new references, conclusions unchanged. Accepted in EPJ

    The BINGO Project IX: Search for Fast Radio Bursts -- A Forecast for the BINGO Interferometry System

    Full text link
    The Baryon Acoustic Oscillations (BAO) from Integrated Neutral Gas Observations (BINGO) radio telescope will use the neutral Hydrogen emission line to map the Universe in the redshift range 0.127z0.4490.127 \le z \le 0.449, with the main goal of probing BAO. In addition, the instrument optical design and hardware configuration support the search for Fast Radio Bursts (FRBs). In this work, we propose the use of a BINGO Interferometry System (BIS) including new auxiliary, smaller, radio telescopes (hereafter \emph{outriggers}). The interferometric approach makes it possible to pinpoint the FRB sources in the sky. We present here the results of several BIS configurations combining BINGO horns with and without mirrors (44 m, 55 m, and 66 m) and 5, 7, 9, or 10 for single horns. We developed a new {\tt Python} package, the {\tt FRBlip}, which generates synthetic FRB mock catalogs and computes, based on a telescope model, the observed signal-to-noise ratio (S/N) that we used to compute numerically the detection rates of the telescopes and how many interferometry pairs of telescopes (\emph{baselines}) can observe an FRB. FRBs observed by more than one baseline are the ones whose location can be determined. We thus evaluate the performance of BIS regarding FRB localization. We found that BIS will be able to localize 23 FRBs yearly with single horn outriggers in the best configuration (using 10 outriggers of 6 m mirrors), with redshift z0.96z \leq 0.96; the full localization capability depends on the number and the type of the outriggers. Wider beams are best to pinpoint FRB sources because potential candidates will be observed by more baselines, while narrow beams look deep in redshift. The BIS can be a powerful extension of the regular BINGO telescope, dedicated to observe hundreds of FRBs during Phase 1. Many of them will be well localized with a single horn + 6 m dish as outriggers.(Abridged)Comment: 12 pages, 9 figures, 5 tables, submitted to A&
    corecore