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Abstract In this paper we perform a dynamical analysis for
a vector field as a candidate for the dark energy, in the pres-
ence of a barotropic fluid. The vector is one component of the
so-called cosmic triad, which is a set of three identical copies
of an abelian field pointing mutually in orthogonal direc-
tions. In order to generalize the analysis, we also assumed
the interaction between dark energy and the barotropic fluid,
with a phenomenological coupling. Both matter and dark
energy eras can be successfully described by the critical
points, indicating that the dynamical system theory is a
viable tool to analyze asymptotic states of such cosmological
models.

1 Introduction

Around 95 % of the universe today corresponds to two kinds
of components whose nature is still unknown. The first one,
called dark energy, is believed to be responsible for the cur-
rent accelerated expansion of the universe [1,2] and it is dom-
inant at present times (∼68 %) [3]. In addition to ordinary
matter, the remaining 27 % of the energy content of the uni-
verse is a form of matter that interacts in principle only grav-
itationally, known as dark matter. The simplest dark-energy
candidate is the cosmological constant, whose equation of
state w� = p�/ρ� = −1 is in agreement with the Planck
results [3]. This attempt, however, suffers from the so-called
cosmological constant problem, a huge discrepancy of 120
orders of magnitude between the theoretical prediction and
the observed data. Such a huge disparity motivates physicists
to look into more sophisticated models. This can be done
either looking for a deeper understanding of where the cos-
mological constant comes from, if one wants to derive it from
first principles, or considering other possibilities for acceler-
ated expansion. In the former case, an attempt is the famous
KKLT model [4], and in the latter one, possibilities are even
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broader, with modifications of general relativity, additional
matter fields and so on (see [5–7] and references therein).
Moreover, the theoretical origin of this constant is still an
open question, with several attempts but with no definitive
answer yet.

Among a wide range of alternatives, the field theory can
provide some other candidates. The simplest one is the canon-
ical scalar field [8–12], although non-canonical scalar fields
have also been explored (tachyon field [13,14], k-essence
[15], or supergravity-inspired models [16–19], for instance).
Another dark-energy candidate is a spin-1 particle, described
by a vector field. To be consistent with the homogeneity and
isotropy of the universe, there should be three identical copies
of the vector field, which one with the same magnitude and
pointing mutually in the orthogonal direction. They are called
cosmic triad and were proposed in [20]. Other possibilities
of vector dark energy are shown in [21–26].

In addition, the two components of the dark sector may
interact with each other [7,27–40] (see [41] for a recent
review), since their densities are comparable and the inter-
action can eventually alleviate the coincidence problem
[42,43].

When the dark-energy candidate is in the presence of a
barotropic fluid (with an equation of state wm = pm/ρm)
the relevant evolution equations can be converted into an
autonomous system and the asymptotic states of the cosmo-
logical models can be analyzed. Such approach was done
for uncoupled dark energy (quintessence, tachyon field and
phantom field for instance [44–49]) and coupled dark energy
[28,34,50–55], but it remained to be done for a vector-like
dark energy, whose interesting properties were explored in
[20]. In this paper, we use the linear dynamical systems the-
ory to investigate the critical points that come from the evo-
lution equations for the vector-like dark energy, considering
also the possibility of interaction between the two compo-
nents of the dark sector, where we propose a phenomeno-
logical coupling. The fixed points found can successfully
describe the matter-dominated universe and the current stage

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81840861?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-016-4328-x&domain=pdf
http://orcid.org/0000-0001-6801-3519
mailto:rlandim@if.usp.br


480 Page 2 of 6 Eur. Phys. J. C (2016) 76 :480

of accelerated expansion, provided that the interaction is suf-
ficiently small.

The rest of the paper is organized as follows. In Sect. 2
we present the basics of the interacting dark energy and the
dynamical analysis theory. Section 3 contains the dynamics
of the vector-like dark energy in the light of the dynamical
system theory, where the critical points and their stabilities
are presented. Section 4 is reserved for our conclusions. We
use Planck units (h̄ = c = 1 = Mpl = 1) throughout the
text.

2 Interacting dark energy and the dynamical system
theory

As a generalization of the continuity equation, we consider
an interaction between the dark energy, described by the cos-
mic triad, and a barotropic fluid, in such a way that the total
energy-momentum tensor is still conserved. Dark energy has
an energy density ρA and pressure pA, with an equation
of state given by wA = pA/ρA. In the flat Friedmann–
Lemaître–Robertson–Walker (FLRW) background with a
scale factor a ≡ a(t), the continuity equations are

ρ̇A + 3H(ρA + pA) = −Q, (1)

ρ̇m + 3H(1 + wm)ρm = Q, (2)

respectively, where H = ȧ/a is the Hubble rate, Q is the
coupling, and the dot is a derivative with respect to the cos-
mic time t . The index m stands for the barotropic fluid, with
wm = 0 for non-relativistic matter and wm = 1/3 for radia-
tion. The case of Q > 0 corresponds to a dark-energy trans-
formation into the barotropic fluid, while Q < 0 is the trans-
formation in the opposite direction. In principle, the coupling
can depend on several variables Q = Q(ρm, ρA, . . .), so
that, inspired by the quintessence case [27,28], where the
coupling is Qρm φ̇, we assume the phenomenological inter-
action Q = 3Qρm Ȧ/a, where Q is a positive constant. The
coupling has this form in order for the right-hand side of the
Proca-like Eq. (9) to be no longer zero but to equal Qρm .1

The case with negative Q is similar and we will not consider
it here because the minus sign of the case Q < 0 can be
absorbed into Ȧ, instead of considering Q < 0.

To deal with the dynamics of the system, we define dimen-
sionless variables. The new variables are going to character-
ize a system of differential equations in the form

X ′ = f [X ], (3)

1 In the scalar field case the coupling Qρm φ̇ leads to the equation of
motion in the FLRW background which also equals Qρm .

where X is a column vector of dimensionless variables and
the prime is the derivative with respect to log a, where we
set the present scale factor a0 to be one. The critical points
Xc are those ones that satisfy X ′ = 0. In order to study
stability of the fixed points, we consider linear perturbations
U around them, thus X = Xc + U . At the critical point the
perturbations U satisfy the following equation:

U ′ = JU, (4)

where J is the Jacobian matrix. The stability around the
fixed points depends on the nature of the eigenvalues (μ)
of J , in such a way that they are stable points if they all
have negative values, unstable points if they all have positive
values and saddle points if at least one eigenvalue has positive
(or negative) value, while the other ones have opposite sign.
In addition, if any eigenvalue is a complex number, the fixed
point can be stable (Re μ < 0) or unstable (Re μ > 0) spiral,
due to the oscillatory behavior of its imaginary part.

3 Vector-like dark-energy dynamics

The Lagrangian for three identical copies of an abelian field
(called cosmic triad in [20]), here uncoupled to matter, is
given by

LA = −√−g
3∑

a=1

(
1

4
FaμνFa

μν + V (Aa2)

)
, (5)

where Fa
μν = ∂μAa

ν − ∂ν Aa
μ and V (A2) is the potential

for the vector field, which breaks gauge invariance, with
Aa2 ≡ Aa

μA
aμ. The energy-momentum tensor of the field

is obtained varying the Lagrangian (5) with respect to the
metric and it is T A

μν = ∑3
a=1 T

a
μν , where

T a
μν =

[
Fa

μρF
aρ
ν +2

dV

dAa2 A
a
μA

a
ν −gμν

(
1

4
Faρσ

ρσ +V (A2)

)]
.

(6)

Varying (5) with respect to the fields Aa
μ gives the equations

of motion

∂μ

(√−gFaμν
) = 2

√−gV ′Aaν, (7)

where from now on we use V ′ ≡ dV
dAa2 .

In an expanding universe, with FLRW metric and scale
factor a, each one of the three vectors should be along a
coordinate axis with same magnitude. An ansatz for the i
components of the vector Aa

μ compatible with homogeneity
and isotropy is

123



Eur. Phys. J. C (2016) 76 :480 Page 3 of 6 480

Aa
i = δai A(t), (8)

where a scalar product with an unit vector is implicit. From
(7) the component Aa

0 is zero and using (8) into (7) the equa-
tion of motion becomes

Ä + H Ȧ + 2V ′A = 0. (9)

The pressure and energy density for the cosmic triad is
obtained from (6)

ρA = 3 Ȧ2

2a2 + 3V, (10)

pA = Ȧ2

2a2 − 3V + 2V ′ A2

a2 . (11)

With this ansatz2 the potential depends now on V (3A2/a2)

and the prime is the derivative with respect to 3A2/a2. We

assume that the potential is given by V = V0e
− 3λA2

a2 , where
V0 is a constant. With this form the quantity −V ′/V will be
constant, as we will see soon. Thus, for the comoving vector
Aa
ic = Aa

i · a (as used in [20]), the potential does not have an
explicit dependence on the scale factor. If the cosmic triad
were massless, we would have Ȧ ∝ a−1, thus ρA ∝ a−4, as
it should be for relativistic matter.

As we have said, we assume the interaction between the
cosmic triad with a barotropic fluid given by 3Qρm Ȧ/a, thus
the right-hand side of Eq. (9) becomes Qρma. In the presence
of a barotropic fluid, the Friedmann equations are

H2 = 1

3

(
3 Ȧ2

2a2 + 3V + ρm

)
, (12)

Ḣ = −1

2

(
2 Ȧ2

a2 + 2V ′ A2

a2 + (1 + wm)ρm

)
. (13)

We now proceed to the dynamical analysis of the system.

3.1 Autonomous system

The dimensionless variables are defined as

x ≡ Ȧ√
2Ha

, y ≡
√
V (φ)

H
, z ≡ A

a
,

λ ≡ −V ′

V
, 
 ≡ VV ′′

V ′2 . (14)

2 In [20] the author used a comoving vector ansatz: Aa
μ = δaμA(t) · a.

This choice leads, of course, to a different equation of motion, energy
density, and pressure. However, the effect due to the scale factor that
here appears in the denominator of ρA and pA, for instance, appears as
a Hubble friction term (H Ȧ) in the same expressions.

The dark-energy density parameter is written in terms of
these new variables as

�A ≡ ρA

3H2 = x2 + y2, (15)

so that Eq. (12) can be written as

�A + �m = 1, (16)

where the density parameter of the barotropic fluid is defined
by �m = ρm/(3H2). From Eqs. (15) and (16) x and y are
restricted in the phase plane by the relation

0 ≤ x2 + y2 ≤ 1, (17)

due to 0 ≤ �A ≤ 1.
The equation of state wA = pA/ρA becomes

wA = x2 − 3y2 − 2λz2

3x2 + 3y2 . (18)

Depending on the value of λ the equation of state can be less
than minus one.

The total effective equation of state is

weff = pA + pm
ρA + ρm

= wm + x2
(

1

3
− wm

)
− y2(1 + wm)

−2

3
λy2z2, (19)

with an accelerated expansion for weff < −1/3. The dynam-
ical system for the variables x , y, z and λ are

dx

dN
= −x + √

2y2zλ − 3√
2
Q(1 − x2 − y2)

−x

[
yz2λ − x2 + y2 − 1 + 3wm

2
(1 − x2 − y2)

]
,

(20)
dy

dN
= −3yzλ(

√
2x − z)

−y

[
y2z2λ − 2x2 − 3

2
(1 + wm)(1 − x2 − y2)

]
,

(21)

dz

dN
= 2x − z, (22)

dλ

dN
= −6λ2z (
 − 1) (

√
2x − z). (23)

3.2 Critical points

The fixed points of the system are obtained by setting
dx/dN = 0, dy/dN = 0, dz/dN = 0, and dλ/dN = 0
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Table 1 Critical points (x , y, and z) of Eq. (20) for the vector-like dark energy. The table shows the correspondent equation of state for the dark
energy (18), the effective equation of state (19), the density parameter for dark energy (15) and the eigenvalues of the Jacobian matrix in Eq. (4)

Point x y z wA �A weff μ1 μ2 μ3

(a) ±1 0 ±2 1
3 (1 − 8λ) 1 1

3 −1 1 ± 3(
√

2Q − wm) 2 + 6(2 − √
2)λ

(b)
√

2Q
wm−1/3 0 2x 1

3 (1 − 8λ)
2Q2

(wm−1/3)2 6Q2 −1 − 1
2 + 9Q2 3

2 + Q2(9 + 108(2 − √
2)λ)

(c) 0 1 0 −1 1 −1 −3(1 + wm) − 3
2 (1 +

√
1 + 8

√
2λ) − 3

2 (1 −
√

1 + 8
√

2λ)

Fig. 1 Phase portrait of the system, with Q = 0 and λ = −0.3. All
trajectories converge to the attractor (c) at x = 0, y = 1, and z =
0, which is a stable spiral that describes the dark-energy-dominated
universe. The top panel shows the slice z = 0, while the bottom panel
shows the phase plane at y = 1

in Eqs. (20)–(23). When 
 = 1, λ is constant the poten-

tial is V (A2) = V0e
−3λA2

a2 .3 Different from the scalar field
case, where V = V0e−λφ , the exponent of the potential also

3 The equation for λ is also equal zero when z = 0 or λ = 0, so that λ

should not necessarily be constant, for the fixed point with this value of
z. However, for the case of dynamical λ, the correspondent eigenvalue
is equal to zero, indicating that the fixed points are not hyperbolic.

Fig. 2 Phase portrait of the system, with Q = 1/
√

6 and λ = −0.3.
All trajectories converge to the attractor (c) at x = 0, y = 1, and
z = 0, which is a stable spiral that describes the dark-energy dominated
universe. The panel shows only the slice z = 0 because the phase plane
for y = 1 is similar to that one showed in Fig. 1

depends on the scale factor a. The fixed points are shown in
Table 1 with the eigenvalues of the Jacobian matrix. Notice
that y cannot be negative.

The point (a) corresponds to a radiation solution, once
weff = 1/3. It can be a saddle or a stable point, depending on
the value of Q and λ. However, the universe is dominated by
the cosmic triad, as indicated by �A = 1, and therefore the
fixed point does not describe a radiation-dominated universe,
since �m = 0. The point (b) is valid only for wm �= 1/3
and it is a saddle point, since two eigenvalues are negative
and one is positive. Since y = 0 for this critical point, x2

should be less than or equal to one (since �A ≤ 1), so the
coupling should be Q ≤ 1/

√
2. However, this critical point

can describe a matter-dominated universe only if Q = 0 or
sufficiently small Q 	 1, so that weff ≈ 0, as so for �A. The
last fixed point (c) is an attractor and describes a dark-energy
dominated universe (�A = 1) that leads to an accelerated
expansion of the universe, since wA = weff = −1. It is
a stable spiral if λ < −1/(8

√
2), otherwise it is a saddle

point. The potential for this condition for λ is V = V0e3|λ|z2

and it behaves as the cosmological constant at the fixed point,
since z ≡ A/a = 0 for (c). Once the coupling is constant and
sufficiently small (to the fixed point (b) describe the matter-
dominated universe), it has the same value, of course, for the
point (c).
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Fig. 3 Effective equation of state weff (19) as a function of the dark-
energy density parameter �A (15). This parametric plot is independent
of Q, once both weff and �A have no explicit dependence on the inter-
action. The blue shaded region represents the allowed values of weff
and �A. We used wm = 0 since this is the only allowed value for the
fixed point (b). The red line shows the transition from the fixed point
(b) (�A = 0) to the fixed point (c) (�A = 1)

We show the phase portrait of the system in Figs. 1
(Q = 0) and 2 (Q = 1/

√
6). The latter case is shown

just to illustrate how the interaction affects the phase por-
trait, although we expect a very small Q, as discussed for the
fixed point (b). We see that all trajectories converge to the
attractor point.

In Fig. 3 we show the effective equation of state weff (19)
as a function of the dark-energy density parameter �A (15),
where the blue shaded region represents the allowed values
of weff and �A. The red line shows the transition from the
fixed point (b) (�A = 0) to the fixed point (c) (�A = 1).

4 Conclusions

In this paper we used the dynamical system theory to inves-
tigate if a vector-like dark energy, similar to [20], in the pres-
ence of a barotropic fluid can lead to the three cosmological
eras, namely, radiation, matter, and dark energy. The analy-
sis was generalized for the case of coupled dark energy, with
a phenomenological interaction 3QȦρm/a. There are fixed
points that successfully describe the matter-dominated and
the dark-energy-dominated universe. Only the radiation era
was not cosmologically viable, however, if one is interested
in the last two periods of the evolution of the universe, the

dynamical system theory provides a good tool to analyze
asymptotic states of such cosmological models.
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