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Abstract In this paper we argue that minimal supergravity
with a flat Kähler metric and a power-law superpotential can
relate the Super-Higgs mechanism for the local spontaneous
supersymmetry breaking and the cosmological tracking solu-
tion, leading in turn to a late-time accelerated expansion of
the universe and alleviating the coincidence problem.

1 Introduction

Observations of Type IA Supernova indicate that the universe
undergoes an accelerated expansion [1,2], which is dominant
at present times (∼68 %) [3]. Existing besides ordinary mat-
ter, the remaining 27 % of matter is an unknown form that
interacts in principle only gravitationally; it is known as dark
matter. The nature of the dark sector is still mysterious and
it is one of the biggest challenges in the modern cosmology.
The simplest dark energy candidate is the cosmological con-
stant, whose equation of state wΛ = pΛ/ρΛ = −1 is in
agreement with the Planck results [3]. This attempt, how-
ever, suffers from the so-called cosmological constant prob-
lem, a huge discrepancy of 120 orders of magnitude between
the theoretical prediction and the observed data. Such a huge
disparity motivates physicists to look into more sophisticated
models. This can be done either looking for a deeper under-
standing of where the cosmological constant comes from, if
one wants to derive it from first principles, or considering
other possibilities for accelerated expansion. In the former
case, an attempt is the famous KKLT model [4], and in the
latter one, possibilities are even broader, with modifications
of General Relativity, additional matter fields and so on (see
[5–7] and references therein).

Among a wide range of alternatives, a scalar field is a
viable candidate to be used but with a broad range of forms
of the potentials. One of the first proposals was the inverse
power-law potential V (φ) ∼ φ−α , where α > 0. Although
non-renormalizable, such a potential has the remarkable
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properties that it leads to the attractor-like behavior for the
equation of state and density parameter of the dark energy,
which are nearly constants for a wide range of initial condi-
tions, and it also alleviates the coincidence problem [8,9].

Regarding the low-energy limit of superstring theory,
supergravity is a natural option to investigate if it can fur-
nish a model that describes the accelerated expansion of
the universe, where the canonical scalar field plays the role
of the dark energy. However, since supergravity with four
supercharges exists in four dimensions at most (that is,
N × 2D/2 = 4 for N = 1 in D = 4), in higher dimensions
(such as D = 10 in superstring theory) one needs more super-
symmetries. Thus minimal supergravity can be seen as an
effective theory in four dimensions, and can be applied to cos-
mology at least as a first approximation or a toy model.1 In the
framework of minimal supergravity, Refs. [12,13] were the
first attempts to describe dark energy through quintessence.
Moreover, models of holographic dark energy were embed-
ded in minimal supergravity in [14].

As usual in minimal supergravity, the scalar potential can
be negative, so some effort should be made in order to avoid
this negative contribution. In [12] one possibility was to
require 〈W 〉 = 0, for instance.2

Supergravity can provide a candidate for dark matter as
well, the gravitino [16]. Once local supersymmetry is broken,
the gravitino acquires a mass by absorbing the goldstino, but
its mass is severely constrained when considering standard
cosmology. The gravitino may be the lightest superparticle
(LSP) being either stable, in a scenario that preserves R-parity
[16], or unstable, but long-lived and with a small R-parity
violation [17,18]. Another possibility is for the gravitino to
be the next-to-lightest superparticle (NLSP), so that it decays
into standard model particles or into LSP.

1 For some models of extended supergravities in cosmology, see [10,
11].
2 The recent work [15] shows the explicit de Sitter supergravity action,
where the negative contribution of the scalar potential is avoided in
another way.
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From the cosmological point-of-view, if the gravitino is
stable its mass should be m3/2 ≤ 1 keV in order not to over-
close the universe [16]. Thus the gravitino may be considered
as dark matter; however, such a value is not what is expected
to solve the hierarchy problem and the gravitino describes
only hot/warm dark matter; then another candidate is needed.
If the gravitino is unstable it should have m3/2 ≥ 10 TeV in
order to decay before the Big Bang Nucleosynthesis (BBN)
and therefore not to conflict with it as a result [19].

These problems may be circumvented if the initial abun-
dance of the gravitino is diluted by inflation, but since the
gravitino can be produced afterward through scattering pro-
cesses when the universe is reheated, these problems can
still exist. Furthermore, the thermal gravitino production pro-
vides an upper bound for the reheating temperature (TR), in
such a way that if the gravitino mass is, for instance, in the
range 10 TeV ≤ m3/2 ≤ 100 TeV, the reheating tempera-
ture should be TR < 1010–1011 GeV [20,21]. Depending on
which is the LSP, the gravitino mass should be even bigger
than 100 TeV [22]. On the other hand, thermal leptogenesis
requires TR ≥ 108–1010 GeV [23,24], which leads also to
strict values for the gravitino mass.

In this paper we expand the previous results in the litera-
ture, taking the spontaneous breaking of local supersymmetry
(SUSY) into account and regarding quintessence in minimal
supergravity. We consider the scalar potential defined by the
usual flat Käher potential K and a power-law superpotential
W , whose scalar field ϕ leads to the local SUSY breaking.
After this mechanism (known also as the Super-Higgs mech-
anism), the massive gravitino can decay into a massless scalar
field Φ. This scalar will play the role of the dark energy and
to avoid a fifth force, the potential V (Φ) will be deduced
from the original potential V (ϕ). It turns out that the poten-
tial V (Φ) corresponds to the well-known tracker behavior,
whose initial conditions for the scalar field do not change the
attractor solution. The advantage here is that simple choices
of K and W lead to both the Super-Higgs mechanism and
the late-time accelerated expansion of the universe in a more
natural and unified way. We use natural units (h̄ = c = 1)
throughout the text.

The rest of the paper is organized in the following man-
ner. In Sect. 2 we present the local supersymmetry breaking
process, assuming the flat Käher potential K and a power-
law superpotential W . In Sect. 3 we relate the previous scalar
potential to a new one, responsible for the accelerated expan-
sion of the universe. Section 4 is reserved for conclusions.

2 The Super-Higgs mechanism

We start our discussion using a complex scalar field φ =
(φR + iφI )/

√
2. We set 8πG = M−1

pl = 1 in the following
steps for simplicity. The scalar potential in N = 1 super-

gravity depends on a real function K ≡ K (φi , φi∗), called
Kähler potential, and a holomorphic function W ≡ W (φi ),
the superpotential. We do not consider D-terms, so the poten-
tial for one scalar field is given by

V = eK
[
K−1

φφ∗
∣∣Wφ + KφW

∣∣2 − 3|W |2
]

(1)

where Kφφ∗ ≡ ∂2K
∂φ∂φ∗ is the Kähler metric, Wφ ≡ ∂W

∂φ
,

Kφ ≡ ∂K
∂φ

. When supergravity is spontaneously broken, the
gravitino acquires a mass given by

m3/2 = 〈eK/2|W |〉 (2)

where 〈. . . 〉 means the vacuum expectation value.
We use the Kähler potential K f = φφ∗, which leads to a

flat Kähler metric and the superpotential W = λ2φn , for real
n, with λ being a free parameter. For these choices of K and
W the potential (1) is

V = λ4eϕ2 [n2ϕ2(n−1) + (2n − 3)ϕ2n + ϕ2(n+1)] (3)

where ϕ ≡ (

√
φ2
R + φ2

I )/
√

2 is the absolute value of the
complex scalar field. We found that (3) has extremal points
at

ϕ1 =
√

1 − n − √
1 − n, (4)

ϕ2 = √−n, (5)

ϕ3 =
√

1 − n + √
1 − n, (6)

for n < 0, with (6) being the global minimum, which is also
valid for the case 0 < n < 1. For n < 0 there are two local
minimum points (ϕ1 and ϕ3), which correspond to V < 0 at
these values. For negative n the potential at ϕ3 corresponds
to the true vacuum, while the potential at ϕ1 corresponds to
the false vacuum. For n > 1, ϕ2 at the minimum point is
negative, but this is not allowed since ϕ is an absolute value.
We consider the case of a vanishing cosmological constant,
so Eq. (3) is zero at the global minimum (6) for n = 3/4.
This fractional number is the only possibility of the potential
given by Eq. (3), which has V = 0 at the minimum point.
This case can be seen in Fig. 1. Due to its steep shape, the
potential cannot drive the slow-roll inflation.

SUSY is spontaneously broken at the minimum point
ϕ0 ≡ ϕ3 (6) and the gravitino becomes massive by absorbing
the massless goldstino. We estimate the gravitino mass for
different values of λ, which are shown in Table 1. The scalar
mass has the same order of magnitude as the gravitino mass,
therefore it may also lead to cosmological difficulties in much
the same way as the Polonyi field does [25]. However, such
a problem can be alleviated as the gravitino problem is, i.e.,
if the scalar mass is larger than O(10TeV) BBN starts after
the decay of the scalar ϕ has finished. From Table 1 we see
that λ ≥ 1011 GeV does not spoil BBN. Since the gravitino
interactions are suppressed by the Planck mass, the dominant
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Fig. 1 Potential V (ϕ) as a function of the field ϕ, with λ = 1 (in
Planck units), for n = 3/4

Table 1 Gravitino masses for
different values of λ λ (GeV) m3/2 (GeV)

1014 1010

1013 108

1012 106

1011 104

1010 102

109 1

108 10−2

107 10−4

106 10−6

interaction is the one proportional to M−1
pl [26], which is, for

our purposes, the gravitino decay only into another complex
scalar field (Φ) plus its spin-1/2 superpartner (Ψ → Φ+χ ).3

The scalar Φ is initially massless, but after the procedure
we are going to follow below, it obtains a scalar potential
and will be responsible for the current accelerated expan-
sion of the universe. The decay rate for the gravitino is
Γ3/2 ∼ m3

3/2/M
2
pl , thus for λ ≥ 1012 GeV, the gravitino time

decay is ≤10−3s, hence it does not conflict BBN results. The
temperature due to the decay is T3/2 ∼ √

Γ3/2 ≤ 107 GeV for
λ ≤ 1012 GeV, in agreement with [20,21], but with a grav-
itino mass one order greater than the range showed in these
references. For λ ≥ 1013 GeV we get T3/2 ≥ 1010 GeV.

As a result of the gravitino decay, there also appears a
massless spin-1/2 fermion χ , which behaves like radiation.
The χ interactions are also suppressed by the Planck scale
because they are due to four fermions terms (∝M−2

pl ) or
through its covariant derivative, whose interaction is with
∂Φ. Since the fermion χ shows a radiation behavior, its cos-

3 Although the interaction with a gauge field is also ∝ M−1
pl we do not

consider it for simplicity, since we have also not considered D-terms
in the scalar potential. Gravitino decay into MSSM particles, such as
photon and photino [20] or neutrino and sneutrino [21], is not considered
here.

mological contribution is diluted as the universe expands
by a−4. When the universe is radiation dominated, ΩΦ is
small, as is Φ̇, which implies that the interaction due to the
covariant derivative is also small. Therefore, the contribution
of χ can be ignored and the gravitino can decay into dark
energy, whose associated potential for the scalar is going to
be deduced from Eq. (3).

3 Dark energy

We first review the complex quintessence as a dark energy
candidate, presented in [27]. In this section the quintessence
field will be related with the results of the last section and the
corresponding quintessence potential will be deduced from
Eq. (3).

As seen in Eq. (3) the scalar potential depends on the
absolute value of the scalar field, as it is in fact for a complex
quintessence field. As in [27], the complex quintessence can
be written as S = Φeiθ , where Φ ≡ |S| is the absolute value
of the scalar and θ is a phase, both depending only on time.
The equations of motion for the complex scalar field in an
expanding universe with FLRW metric and with a potential
that depends only on the absolute value Φ (as in our case) is
[27]

Φ̈ + 3HΦ̇ + d

dΦ

(
ω2

2a6

1

Φ2 + V (Φ)

)
= 0, (7)

where a is the scale factor and the first term in the brack-
ets comes from the equation of motion for θ , with ω being
an integration constant interpreted as angular velocity [27].
This term drives Φ away from zero and the factor a−6 may
make the term decrease very fast, provided that Φ does not
decrease faster than a−3/2. This situation never happens for
our model, so that the contribution due to the phase compo-
nent θ decreases faster than the matter density ρm (propor-
tional to a−3). Furthermore, if ω is small, the complex scalar
field behaves like a real scalar. From all these arguments, we
neglect the complex contribution in the following.

After supergravity is spontaneously broken, the scalar
field ϕ may oscillate around V (ϕ0) = 0 and the massive
gravitino can decay into the scalar field Φ. Since the scalar
ϕ oscillates around V (ϕ0) = 0 before decay, the following
steps are naturally justified. We first shift the scalar potential
from V (ϕ) to V (ϕ −ϕ0), thus the minimum point goes from
ϕ0 �= 0 to ϕ0 = 0.4 The Taylor expansion of V (ϕ) around
the new minimum ϕ = ϕ0 = 0 (for n = 3/4) leads to a
natural exponential term, eϕ2 ≈ 1. We finally make a change

4 One may wonder if this shift is valid once ϕ cannot be negative, which
would not be the case after this procedure. However, this shift is done
in order to get a potential for the scalar Φ, originated from the gravitino
decay, thus the shift is justified.

123



430 Page 4 of 5 Eur. Phys. J. C (2016) 76 :430

of variables ϕ → Φ. All these procedures give rise to the
potential V (Φ)

V (Φ) = M9/2

√
Φ

+ O(Φ1/2). (8)

The constant M9/2 is written in this form for convenience.
The leading-order term of this potential (8) is an example of
the well-known tracking behavior [8,9]. Although the field Φ

is initially massless, the procedure above led to an effective
potential that was absent in the original Lagrangian. We then
see that such a potential has been deduced differently from
that presented in [12,13].

The parameter λ does not have the same order of M9/2, as
long as the original shifted potential was expanded around
zero. The scalar field ϕ might oscillate between zero and
some tiny value of the scalar potential, such as 10−47 GeV4,
for instance. Therefore, the order of magnitude of the poten-
tial V (Φ) (M9/2) is due to the magnitude of the oscillations,
but its numerical value is determined phenomenologically.
The tracker condition Γ ≡ VV ′′/V ′2 = (n + 1)/n > 1 (for
a generic potential V (φ) ∼ φ−α for α > 0) is satisfied in
our case, where α = 1/2. Notice that the potential (3) can
exhibit a tracking behavior only for n < 1.

The dynamical system analysis of the quintessence field
shows that the potential Eq. (8) leads to a fixed point in the
phase plane, which is a stable attractor [5,28]. The equation
of state for the quintessence field is given by wΦ = −1 +
λ̃2/3, where λ̃ ≡ −V ′(Φ)/V ((Φ) decreases to zero for the
tracking solution. The potential of Eq. (8) gives an equation
of state wΦ = −0.96, in agreement with the Planck results
[3], for λ̃ = 0.35, which in turn is easily achieved since λ̃

decreases to zero.
As is usual in quintessence models in supergravity, such

as in [12,13], different energy scales are needed to take
both dynamical dark energy and local SUSY breaking into
account. This unavoidable feature is present in our model in
the fact that we have needed two different free parameters
λ and M9/2 and they are determined by phenomenological
arguments.

4 Conclusions

In this paper we have analyzed the scalar potential in min-
imal supergravity using the traditional flat Kähler potential
and the power-law superpotential, whose single scalar field
ϕ is responsible for the Super-Higgs mechanism. The grav-
itino decays before BBN and originates in another scalar, Φ,
which is regarded as the dark energy. Although initially mass-
less, the scalar Φ had its potential derived from the potential
V (ϕ), where the leading-order term of the expanded original
potential (after a suitable change of variable) is a well-known

example that satisfies the tracker condition. Therefore, the
Super-Higgs mechanism and the cosmological tracking solu-
tion are not completely independent.
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