5,828 research outputs found

    Quiet Sun Magnetic Field Measurements Based on Lines with Hyperfine Structure

    Full text link
    The Zeeman pattern of MnI lines is sensitive to hyperfine structure (HFS) and, they respond to hG magnetic field strengths differently from the lines used in solar magnetometry. This peculiarity has been employed to measure magnetic field strengths in quiet Sun regions. However, the methods applied so far assume the magnetic field to be constant in the resolution element. The assumption is clearly insufficient to describe the complex quiet Sun magnetic fields, biasing the results of the measurements. We present the first syntheses of MnI lines in realistic quiet Sun model atmospheres. The syntheses show how the MnI lines weaken with increasing field strength. In particular, kG magnetic concentrations produce NnI 5538 circular polarization signals (Stokes V) which can be up to two orders of magnitude smaller than the weak magnetic field approximation prediction. Consequently, (1) the polarization emerging from an atmosphere having weak and strong fields is biased towards the weak fields, and (2) HFS features characteristic of weak fields show up even when the magnetic flux and energy are dominated by kG fields. For the HFS feature of MnI 5538 to disappear the filling factor of kG fields has to be larger than the filling factor of sub-kG fields. Stokes V depends on magnetic field inclination according to the simple consine law. Atmospheres with unresolved velocities produce asymmetric line profiles, which cannot be reproduced by simple one-component model atmospheres. The uncertainty of the HFS constants do not limit the use of MnI lines for magnetometry.Comment: Accepted for publication in ApJ. 10 pages, 14 figure

    Plasma turbulence at ion scales: a comparison between PIC and Eulerian hybrid-kinetic approaches

    Full text link
    Kinetic-range turbulence in magnetized plasmas and, in particular, in the context of solar-wind turbulence has been extensively investigated over the past decades via numerical simulations. Among others, one of the widely adopted reduced plasma model is the so-called hybrid-kinetic model, where the ions are fully kinetic and the electrons are treated as a neutralizing (inertial or massless) fluid. Within the same model, different numerical methods and/or approaches to turbulence development have been employed. In the present work, we present a comparison between two-dimensional hybrid-kinetic simulations of plasma turbulence obtained with two complementary approaches spanning about two decades in wavenumber - from MHD inertial range to scales well below the ion gyroradius - with a state-of-the-art accuracy. One approach employs hybrid particle-in-cell (HPIC) simulations of freely-decaying Alfv\'enic turbulence, whereas the other consists of Eulerian hybrid Vlasov-Maxwell (HVM) simulations of turbulence continuously driven with partially-compressible large-scale fluctuations. Despite the completely different initialization and injection/drive at large scales, the same properties of turbulent fluctuations at kρi1k_\perp\rho_i\gtrsim1 are observed. The system indeed self-consistently "reprocesses" the turbulent fluctuations while they are cascading towards smaller and smaller scales, in a way which actually depends on the plasma beta parameter. Small-scale turbulence has been found to be mainly populated by kinetic Alfv\'en wave (KAW) fluctuations for β1\beta\geq1, whereas KAW fluctuations are only sub-dominant for low-β\beta.Comment: 18 pages, 4 figures, accepted for publication in J. Plasma Phys. (Collection: "The Vlasov equation: from space to laboratory plasma physics"

    Differential and Twistor Geometry of the Quantum Hopf Fibration

    Full text link
    We study a quantum version of the SU(2) Hopf fibration S7S4S^7 \to S^4 and its associated twistor geometry. Our quantum sphere Sq7S^7_q arises as the unit sphere inside a q-deformed quaternion space Hq2\mathbb{H}^2_q. The resulting four-sphere Sq4S^4_q is a quantum analogue of the quaternionic projective space HP1\mathbb{HP}^1. The quantum fibration is endowed with compatible non-universal differential calculi. By investigating the quantum symmetries of the fibration, we obtain the geometry of the corresponding twistor space CPq3\mathbb{CP}^3_q and use it to study a system of anti-self-duality equations on Sq4S^4_q, for which we find an `instanton' solution coming from the natural projection defining the tautological bundle over Sq4S^4_q.Comment: v2: 38 pages; completely rewritten. The crucial difference with respect to the first version is that in the present one the quantum four-sphere, the base space of the fibration, is NOT a quantum homogeneous space. This has important consequences and led to very drastic changes to the paper. To appear in CM

    Gravity from Dirac Eigenvalues

    Get PDF
    We study a formulation of euclidean general relativity in which the dynamical variables are given by a sequence of real numbers λn\lambda_{n}, representing the eigenvalues of the Dirac operator on the curved spacetime. These quantities are diffeomorphism-invariant functions of the metric and they form an infinite set of ``physical observables'' for general relativity. Recent work of Connes and Chamseddine suggests that they can be taken as natural variables for an invariant description of the dynamics of gravity. We compute the Poisson brackets of the λn\lambda_{n}'s, and find that these can be expressed in terms of the propagator of the linearized Einstein equations and the energy-momentum of the eigenspinors. We show that the eigenspinors' energy-momentum is the Jacobian matrix of the change of coordinates from the metric to the λn\lambda_{n}'s. We study a variant of the Connes-Chamseddine spectral action which eliminates a disturbing large cosmological term. We analyze the corresponding equations of motion and find that these are solved if the energy momenta of the eigenspinors scale linearly with the mass. Surprisingly, this scaling law codes Einstein's equations. Finally we study the coupling to a physical fermion field.Comment: An enlarged and improved version which will be pubblished in Mod. Phys. Lett.

    Three-dimensional evolution of magnetic and velocity shear driven instabilities in a compressible magnetized jet

    Full text link
    The problem of three-dimensional combined magnetic and velocity shear driven instabilities of a compressible magnetized jet modeled with a plane neutral/current double vortex sheet in the framework of the resistive magnetohydrodynamics is addressed. The resulting dynamics given by the stream+current sheet interaction is analyzed and the effects of a variable geometry of the basic fields are considered. Depending on the basic asymptotic magnetic field configuration, a selection rule of the linear instability modes can be obtained. Hence, the system follows a two-stage path developing either through a fully three-dimensional dynamics with a rapid evolution of kink modes leading to a final turbulent state, or rather through a driving two-dimensional instability pattern that develops on parallel planes on which a reconnection+coalescence process takes place.Comment: 33 pages, 15 figures, accepted for publication in Physics of Plasma

    Using HINODE/Extreme-Ultraviolet Imaging Spectrometer to confirm a seismologically inferred coronal temperature

    Get PDF
    The Extreme-Ultraviolet Imaging Spectrometer on board the HINODE satellite is used to examine the loop system described in Marsh et al. (2009) by applying spectroscopic diagnostic methods. A simple isothermal mapping algorithm is applied to determine where the assumption of isothermal plasma may be valid, and the emission measure locii technique is used to determine the temperature profile along the base of the loop system. It is found that, along the base, the loop has a uniform temperature profile with a mean temperature of 0.89 +- 0.09 MK which is in agreement with the temperature determined seismologically in Marsh et al. (2009), using observations interpreted as the slow magnetoacoustic mode. The results further strengthen the slow mode interpretation, propagation at a uniform sound speed, and the analysis method applied in Marsh et al. (2009). It is found that it is not possible to discriminate between the slow mode phase speed and the sound speed within the precision of the present observations

    Bioinformatic characterization of sulfotransferase provides new insights for the exploitation of sulfated polysaccharides in caulerpa

    Get PDF
    Caulerpa is an unusual algal genus from Caulerpaceae (Chlorophyta, Bryopsidales). Species from this family produce a wide range of metabolites suitable for biotechnology applications. Among these, sulfated polysaccharides (SPs) are often highly desirable for pharmaceutical and nutraceutical applications. Here, we provide a classification of sulfotransferases from Caulerpa; these important enzymes catalyze the nodal step for the biosynthesis of SPs. For this, we performed phylogenetic, genomic, expression analyses and prediction of the protein structure on sulfotransferases from Caulerpa. Sequences, domains and structures of sulfotransferases generally shared common characteristics with other plants and algae. However, we found an extensive duplication of sulfotransferase gene family, which is unique among the green algae. Expression analysis revealed specific transcript abundance in the pinnae and rachis of the alga. The unique genomic features could be utilized for the production of complex SPs, which require multiple and specific sulfation reactions. The expansion of this gene family in Caulerpaceae would have resulted in a number of proteins characterizing the unique SPs found in these algae. We provide a putative biosynthetic pathway of SPs, indicating the unique characteristics of this pathway in Caulerpa species. These data may help in the future selection of Caulerpa species for both commercial applications and genetic studies to improve the synthesis of valuable products from Caulerpa

    Sub-structure formation in starless cores

    Get PDF
    Motivated by recent observational searches of sub-structure in starless molecular cloud cores, we investigate the evolution of density perturbations on scales smaller than the Jeans length embedded in contracting isothermal clouds, adopting the same formalism developed for the expanding Universe and the solar wind. We find that initially small amplitude, Jeans-stable perturbations (propagating as sound waves in the absence of a magnetic field), are amplified adiabatically during the contraction, approximately conserving the wave action density, until they either become nonlinear and steepen into shocks at a time tnlt_{\rm nl}, or become gravitationally unstable when the Jeans length decreases below the scale of the perturbations at a time tgrt_{\rm gr}. We evaluate analytically the time tnlt_{\rm nl} at which the perturbations enter the non-linear stage using a Burgers' equation approach, and we verify numerically that this time marks the beginning of the phase of rapid dissipation of the kinetic energy of the perturbations. We then show that for typical values of the rms Mach number in molecular cloud cores, tnlt_{\rm nl} is smaller than tgrt_{\rm gr}, and therefore density perturbations likely dissipate before becoming gravitational unstable. Solenoidal modes grow at a faster rate than compressible modes, and may eventually promote fragmentation through the formation of vortical structures.Comment: 8 pages, 4 figure
    corecore