6,200 research outputs found
Mission design for LISA Pathfinder
Here we describe the mission design for SMART-2/LISA Pathfinder. The best
trade-off between the requirements of a low-disturbance environment and
communications distance is found to be a free-insertion Lissajous orbit around
the first co-linear Lagrange point of the Sun-Earth system L1, 1.5x 10^6 km
from Earth. In order to transfer SMART-2/LISA Pathfinder from a low Earth
orbit, where it will be placed by a small launcher, the spacecraft carries out
a number of apogee-raise manoeuvres, which ultimatively place it to a parabolic
escape trajectory towards L1. The challenges of the design of a small mission
are met, fulfilling the very demanding technology demonstration requirements
without creating excessive requirements on the launch system or the ground
segment.Comment: 7 pages, 6 figures, 5th International LISA Symposium, see
http://www.landisoft.de/Markus-Landgra
Aspects of the Mass Distribution of Interstellar Dust Grains in the Solar System from In-Situ Measurements
The in-situ detection of interstellar dust grains in the Solar System by the
dust instruments on-board the Ulysses and Galileo spacecraft as well as the
recent measurements of hyperbolic radar meteors give information on the
properties of the interstellar solid particle population in the solar vicinity.
Especially the distribution of grain masses is indicative of growth and
destruction mechanisms that govern the grain evolution in the interstellar
medium. The mass of an impacting dust grain is derived from its impact velocity
and the amount of plasma generated by the impact. Because the initial velocity
and the dynamics of interstellar particles in the Solar System are well known,
we use an approximated theoretical instead of the measured impact velocity to
derive the mass of interstellar grains from the Ulysses and Galileo in-situ
data. The revised mass distributions are steeper and thus contain less large
grains than the ones that use measured impact velocities, but large grains
still contribute significantly to the overall mass of the detected grains. The
flux of interstellar grains with masses is determined to
be . The comparison of radar data
with the extrapolation of the Ulysses and Galileo mass distribution indicates
that the very large () hyperbolic meteoroids detected by
the radar are not kinematically related to the interstellar dust population
detected by the spacecraft.Comment: 14 pages, 11 figures, to appear in JG
Potential of the TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor for the monitoring of terrestrial chlorophyll fluorescence
Global monitoring of sun-induced chlorophyll fluorescence (SIF) is improving our knowledge about the photosynthetic functioning of terrestrial ecosystems. The feasibility of SIF retrievals from spaceborne atmospheric spectrometers has been demonstrated by a number of studies in the last years. In this work, we investigate the potential of the upcoming TROPOspheric Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite mission for SIF retrieval. TROPOMI will sample the 675–775 nm spectral window with a spectral resolution of 0.5 nm and a pixel size of 7 km × 7 km. We use an extensive set of simulated TROPOMI data in order to assess the uncertainty of single SIF retrievals and subsequent spatio-temporal composites. Our results illustrate the enormous improvement in SIF monitoring achievable with TROPOMI with respect to comparable spectrometers currently in-flight, such as the Global Ozone Monitoring Experiment-2 (GOME-2) instrument. We find that TROPOMI can reduce global uncertainties in SIF mapping by more than a factor of 2 with respect to GOME-2, which comes together with an approximately 5-fold improvement in spatial sampling. Finally, we discuss the potential of TROPOMI to map other important vegetation parameters at a global scale with moderate spatial resolution and short revisit time. Those include leaf photosynthetic pigments and proxies for canopy structure, which will complement SIF retrievals for a self-contained description of vegetation condition and functioning
Artificial Intelligence and Machine Learning for Quantum Technologies
In recent years, the dramatic progress in machine learning has begun to impact many areas of science and technology significantly. In the present perspective article, we explore how quantum technologies are benefiting from this revolution. We showcase in illustrative examples how scientists in the past few years have started to use machine learning and more broadly methods of artificial intelligence to analyze quantum measurements, estimate the parameters of quantum devices, discover new quantum experimental setups, protocols, and feedback strategies, and generally improve aspects of quantum computing, quantum communication, and quantum simulation. We highlight open challenges and future possibilities and conclude with some speculative visions for the next decade
Follow-up study of sensory-motor polyneuropathy in Type 1 (insulin-dependent) diabetic subjects after simultaneous pancreas and kidney transplantation and after graft rejection
The influence of successful simultaneous pancreas and kidney transplantation on peripheral polyneuropathy was investigated in 53 patients for a mean observation period of 40.3 months. Seventeen patients were followed-up for more than 3 years. Symptoms and signs were assessed every 6 months using a standard questionnaire, neurological examination and measurement of sensory and motor nerve conduction velocities. While symptoms of polyneuropathy improved (pain, paraesthesia, cramps, restless-legs) and nerve conduction velocity increased, there was no change of clinical signs (sensation, muscle-force, tendon-reflexes). Following kidney-graft-rejection there was a slight decrease of nerve conduction verlocity during the first year, which was not statistically significant. Following pancreas-graft rejection there was no change of nerve conduction velocity during the first year. Comparing the maximum nerve conduction velocity of the patients with pancreas-graft-rejection to the nerve conduction velocities of these patients at the end of the study, there was a statistically significant decrease of 6.5 m/s.
In conclusion, we believe that strict normalization of glucose metabolism alters the progressive course of diabetic polyneuropathy. It may be stabilized or partly reversed after successful grafting even in long-term diabetic patients
Prolactin
During an oral glucose tolerance test (OGTT) glucose and insulin levels were measured in 26 patients with prolactin-producing pituitary tumours without growth hormone excess. Basal glucose and insulin levels did not differ from the values of an age-matched control group. After glucose load the hyperprolactinaemic patients showed a decrease in glucose tolerance and a hyperinsulinaemia. Bromocriptine (CB 154), which suppressed PRL, improved glucose tolerance and decreased insulin towards normal in a second OGTT. — Human PRL or CB 154 had no significant influence on insulin release due to glucose in the perfused rat pancreas. — These findings suggest a diabetogenic effect of PRL. CB 154 might be a useful drug in improving glucose utilization in hormone-active pituitary tumours
Origins of Solar System Dust Beyond Jupiter
The measurements of cosmic interplanetary dust by the instruments on board the Pioneer 10 and 11 spacecraft contain the dynamical signature of dust generated by Edgeworth-Kuiper Belt objects, as well as short period Oort Cloud comets and short period Jupiter family comets. While the dust concentration detected between Jupiter and Saturn is mainly due to the cometary components, the dust outside Saturn's orbit is dominated by grains originating from the Edgeworth-Kuiper Belt. In order to sustain a dust concentration that accounts for the Pioneer measurements, short period external Jupiter family comets, on orbits similar to comet 29P/Schwassmann-Wachmann-1, have to produce of dust grains with sizes between 0.01 and . A sustained production rate of has to be provided by short period Oort cloud comets on 1P/Halley-like orbits. The comets can not, however, account for the dust flux measured outside Saturn's orbit. The measurements there can only be explained by a generation of dust grains in the Edgeworth-Kuiper belt by mutual collisions of the source objects and by impacts of interstellar dust grains onto the objects' surfaces. These processes have to release in total of dust from the Edgeworth Kuiper belt objects in order to account for the amount of dust found by Pioneer beyond Saturn, making the Edgeworth-Kuiper disk the brightest extended feature of the Solar System when observed from afar
Dust in the Local Interstellar Wind
The gas-to-dust mass ratios found for interstellar dust within the Solar
System, versus values determined astronomically for the cloud around the Solar
System, suggest that large and small interstellar grains have separate
histories, and that large interstellar grains preferentially detected by
spacecraft are not formed exclusively by mass exchange with nearby interstellar
gas. Observations by the Ulysses and Galileo satellites of the mass spectrum
and flux rate of interstellar dust within the heliosphere are combined with
information about the density, composition, and relative flow speed and
direction of interstellar gas in the cloud surrounding the solar system to
derive an in situ value for the gas-to-dust mass ratio, . Hubble observations of the cloud surrounding the solar system
yield a gas-to-dust mass ratio of Rg/d=551+61-251 when B-star reference
abundances are assumed. The exclusion of small dust grains from the heliosheath
and heliosphere regions are modeled, increasing the discrepancy between
interstellar and in situ observations. The shock destruction of interstellar
grains is considered, and comparisons are made with interplanetary and presolar
dust grains.Comment: 87 pages, 9 figures, 6 tables, accepted for publication in
Astrophysical Journal. Uses AASTe
- …