10,187 research outputs found
Unexpected phase locking of magnetic fluctuations in the multi-k magnet USb
The spin waves in the multi-k antiferromagnet USb soften and become quasielastic well below the antiferromagnetic ordering temperature TN. This occurs without a magnetic or structural transition. It has been suggested that this change is in fact due to dephasing of the different multi-k components: a switch from 3-k to 1-k behavior. In this work, we use inelastic neutron scattering with tridirectional polarization analysis to probe the quasielastic magnetic excitations and reveal that the 3-k structure does not dephase. More surprisingly, the paramagnetic correlations also maintain the same clear phase correlations well above TN (up to at least 1.4TN)
Well-posedness and asymptotic behavior of a multidimensional model of morphogen transport
Morphogen transport is a biological process, occurring in the tissue of
living organisms, which is a determining step in cell differentiation. We
present rigorous analysis of a simple model of this process, which is a system
coupling parabolic PDE with ODE. We prove existence and uniqueness of solutions
for both stationary and evolution problems. Moreover we show that the solution
converges exponentially to the equilibrium in topology. We
prove all results for arbitrary dimension of the domain. Our results improve
significantly previously known results for the same model in the case of one
dimensional domain
When it Pays to Rush: Interpreting Morphogen Gradients Prior to Steady-State
During development, morphogen gradients precisely determine the position of
gene expression boundaries despite the inevitable presence of fluctuations.
Recent experiments suggest that some morphogen gradients may be interpreted
prior to reaching steady-state. Theoretical work has predicted that such
systems will be more robust to embryo-to-embryo fluctuations. By analysing two
experimentally motivated models of morphogen gradient formation, we investigate
the positional precision of gene expression boundaries determined by
pre-steady-state morphogen gradients in the presence of embryo-to-embryo
fluctuations, internal biochemical noise and variations in the timing of
morphogen measurement. Morphogens that are direct transcription factors are
found to be particularly sensitive to internal noise when interpreted prior to
steady-state, disadvantaging early measurement, even in the presence of large
embryo-to-embryo fluctuations. Morphogens interpreted by cell-surface receptors
can be measured prior to steady-state without significant decrease in
positional precision provided fluctuations in the timing of measurement are
small. Applying our results to experiment, we predict that Bicoid, a
transcription factor morphogen in Drosophila, is unlikely to be interpreted
prior to reaching steady-state. We also predict that Activin in Xenopus and
Nodal in zebrafish, morphogens interpreted by cell-surface receptors, can be
decoded in pre-steady-state.Comment: 18 pages, 3 figure
Effective Confinement as Origin of the Equivalence of Kinetic Temperature and Fluctuation-Dissipation Ratio in a Dense Shear Driven Suspension
We study response and velocity autocorrelation functions for a tagged
particle in a shear driven suspension governed by underdamped stochastic
dynamics. We follow the idea of an effective confinement in dense suspensions
and exploit a time-scale separation between particle reorganization and
vibrational motion. This allows us to approximately derive the
fluctuation-dissipation theorem in a "hybrid" form involving the kinetic
temperature as an effective temperature and an additive correction term. We
show numerically that even in a moderately dense suspension the latter is
negligible. We discuss similarities and differences with a simple toy model, a
single trapped particle in shear flow
Robust formation of morphogen gradients
We discuss the formation of graded morphogen profiles in a cell layer by
nonlinear transport phenomena, important for patterning developing organisms.
We focus on a process termed transcytosis, where morphogen transport results
from binding of ligands to receptors on the cell surface, incorporation into
the cell and subsequent externalization. Starting from a microscopic model, we
derive effective transport equations. We show that, in contrast to morphogen
transport by extracellular diffusion, transcytosis leads to robust ligand
profiles which are insensitive to the rate of ligand production
Mobility and Diffusion of a Tagged Particle in a Driven Colloidal Suspension
We study numerically the influence of density and strain rate on the
diffusion and mobility of a single tagged particle in a sheared colloidal
suspension. We determine independently the time-dependent velocity
autocorrelation functions and, through a novel method, the response functions
with respect to a small force. While both the diffusion coefficient and the
mobility depend on the strain rate the latter exhibits a rather weak
dependency. Somewhat surprisingly, we find that the initial decay of response
and correlation functions coincide, allowing for an interpretation in terms of
an 'effective temperature'. Such a phenomenological effective temperature
recovers the Einstein relation in nonequilibrium. We show that our data is well
described by two expansions to lowest order in the strain rate.Comment: submitted to EP
- …