10,344 research outputs found
Temperature-dependent Hall scattering factor and drift mobility in remotely doped Si:B/SiGe/Si heterostructures
Hall-and-Strip measurements on modulation-doped SiGe heterostructures and combined Hall and capacitance–voltage measurements on metal-oxide-semiconductor (MOS)-gated enhancement mode structures have been used to deduce Hall scattering factors, rH, in the Si1 – xGex two-dimensional hole gas. At 300 K, rH was found to be equal to 0.4 for x = 0.2 and x = 0.3. Knowing rH, it is possible to calculate the 300 K drift mobilities in the modulation-doped structures which are found to be 400 cm2 V – 1 s – 1 at a carrier density of 3.3 × 1011 cm – 2 for x = 0.2 and 300 cm2 V – 1 s – 1 at 6.3 × 1011 cm – 2 for x = 0.3, factors of between 1.5 and 2.0 greater than a Si pMOS control
Magnetic Excitations in NpCoGa5
We report the results of inelastic neutron scattering experiments on
NpCoGa, an isostructural analogue of the PuCoGa superconductor. Two
energy scales characterize the magnetic response in the antiferromagnetic
phase. One is related to a non-dispersive excitation between two crystal field
levels. The other at lower energies corresponds to dispersive fluctuations
emanating from the magnetic zone center. The fluctuations persist in the
paramagnetic phase also, although weaker in intensity. This supports the
possibility that magnetic fluctuations are present in PuCoGa, where
unconventional d-wave superconductivity is achieved in the absence of magnetic
order.Comment: 4 pages, 5 figure
Robust formation of morphogen gradients
We discuss the formation of graded morphogen profiles in a cell layer by
nonlinear transport phenomena, important for patterning developing organisms.
We focus on a process termed transcytosis, where morphogen transport results
from binding of ligands to receptors on the cell surface, incorporation into
the cell and subsequent externalization. Starting from a microscopic model, we
derive effective transport equations. We show that, in contrast to morphogen
transport by extracellular diffusion, transcytosis leads to robust ligand
profiles which are insensitive to the rate of ligand production
The outcomes of pregnancy in women with untreated epilepsy
Purpose: To determine the outcomes in regards to seizure control and foetal malformation in pregnant women with epilepsy not treated with antiepileptic drugs (AEDs). Method: Analysis of data from the Australian Register of AEDs in Pregnancy on 148 women with epilepsy who were not receiving AEDs before and during at least the first trimester of pregnancy. Results: Seizure control was less likely to be maintained in AED-untreated pregnancies. Whether AED therapy had been ceased in preparation for pregnancy, or had not been employed for long periods before pregnancy, made no statistically significant difference to seizure control outcomes, but those who ceased therapy in preparation for pregnancy were more likely to again be taking AED therapy by term. Foetal malformation rates were reasonably similar in untreated pregnancies, and in treated pregnancies if pregnancies exposed to known AED teratogens (valproate and probably topiramate) were excluded from consideration. Conclusion: Leaving epilepsy untreated during pregnancy appears disadvantageous from the standpoint of seizure control: it also does not reduce the hazard of foetal malformation unless it avoids valproate or topiramate intake during pregnancy
Development of Readout Interconnections for the Si-W Calorimeter of SiD
The SiD collaboration is developing a Si-W sampling electromagnetic
calorimeter, with anticipated application for the International Linear
Collider. Assembling the modules for such a detector will involve special
bonding technologies for the interconnections, especially for attaching a
silicon detector wafer to a flex cable readout bus. We review the interconnect
technologies involved, including oxidation removal processes, pad surface
preparation, solder ball selection and placement, and bond quality assurance.
Our results show that solder ball bonding is a promising technique for the Si-W
ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
Charge density waves and surface Mott insulators for adlayer structures on semiconductors: extended Hubbard modeling
Motivated by the recent experimental evidence of commensurate surface charge
density waves (CDW) in Pb/Ge(111) and Sn/Ge(111) sqrt{3}-adlayer structures, as
well as by the insulating states found on K/Si(111):B and SiC(0001), we have
investigated the role of electron-electron interactions, and also of
electron-phonon coupling, on the narrow surface state band originating from the
outer dangling bond orbitals of the surface. We model the sqrt{3} dangling bond
lattice by an extended two-dimensional Hubbard model at half-filling on a
triangular lattice. We include an on-site Hubbard repulsion U and a
nearest-neighbor Coulomb interaction V, plus a long-ranged Coulomb tail. The
electron-phonon interaction is treated in the deformation potential
approximation. We have explored the phase diagram of this model including the
possibility of commensurate 3x3 phases, using mainly the Hartree-Fock
approximation. For U larger than the bandwidth we find a non-collinear
antiferromagnetic SDW insulator, possibly corresponding to the situation on the
SiC and K/Si surfaces. For U comparable or smaller, a rich phase diagram
arises, with several phases involving combinations of charge and
spin-density-waves (SDW), with or without a net magnetization. We find that
insulating, or partly metallic 3x3 CDW phases can be stabilized by two
different physical mechanisms. One is the inter-site repulsion V, that together
with electron-phonon coupling can lower the energy of a charge modulation. The
other is a novel magnetically-induced Fermi surface nesting, stabilizing a net
cell magnetization of 1/3, plus a collinear SDW, plus an associated weak CDW.
Comparison with available experimental evidence, and also with first-principle
calculations is made.Comment: 11 pages, 9 figure
Electronic structure of the muonium center as a shallow donor in ZnO
The electronic structure and the location of muonium centers (Mu) in
single-crystalline ZnO were determined for the first time. Two species of Mu
centers with extremely small hyperfine parameters have been observed below 40
K. Both Mu centers have an axial-symmetric hyperfine structure along with a
[0001] axis, indicating that they are located at the AB_{O,//} and BC_{//}
sites. It is inferred from their small ionization energy (~6 meV and 50 meV)
and hyperfine parameters (~10^{-4} times the vacuum value) that these centers
behave as shallow donors, strongly suggesting that hydrogen is one of the
primary origins of n type conductivity in as-grown ZnO.Comment: 4 pages, 4 figures, submitted to PR
Neighborhood regulation by lncRNA promoters, transcription, and splicing
Mammalian genomes are pervasively transcribed to produce thousands of spliced long noncoding RNAs (lncRNAs), whose functions remain poorly understood. Because recent evidence has implicated several specific lncRNA loci in the local regulation of gene expression, we sought to determine whether such local regulation is a property of many lncRNA loci. We used genetic manipulations to dissect 12 genomic loci that produce lncRNAs and found that 5 of these loci influence the expression of a neighboring gene in cis. Surprisingly, however, none of these effects required the specific lncRNA transcripts themselves and instead involved general processes associated with their production, including enhancer-like activity of gene promoters, the process of transcription, and the splicing of the transcript. Interestingly, such effects are not limited to lncRNA loci: we found similar effects on local gene expression at 4 of 6 protein-coding loci. These results demonstrate that 'crosstalk' among neighboring genes is a prevalent phenomenon that can involve multiple mechanisms and cis regulatory signals, including a novel role for RNA splicing. These mechanisms may explain the function and evolution of some genomic loci that produce lncRNAs
- …