8,908 research outputs found

    Semiclassical quantization of the Bogoliubov spectrum

    Full text link
    We analyze the Bogoliubov spectrum of the 3-sites Bose-Hubbard model with finite number of Bose particles by using a semiclassical approach. The Bogoliubov spectrum is shown to be associated with the low-energy regular component of the classical Hubbard model. We identify the full set of the integrals of motions of this regular component and, quantizing them, obtain the energy levels of the quantum system. The critical values of the energy, above which the regular Bogoliubov spectrum evolves into a chaotic spectrum, is indicated as well.Comment: 4.1 pages, 3 figure

    Three-dimensional Roton-Excitations and Supersolid formation in Rydberg-excited Bose-Einstein Condensates

    Full text link
    We study the behavior of a Bose-Einstein condensate in which atoms are weakly coupled to a highly excited Rydberg state. Since the latter have very strong van der Waals interactions, this coupling induces effective, nonlocal interactions between the dressed ground state atoms, which, opposed to dipolar interactions, are isotropically repulsive. Yet, one finds partial attraction in momentum space, giving rise to a roton-maxon excitation spectrum and a transition to a supersolid state in three-dimensional condensates. A detailed analysis of decoherence and loss mechanisms suggests that these phenomena are observable with current experimental capabilities.Comment: 4 pages, 5 figure

    Monte Carlo simulations of Rb2MnF4{\rm Rb_2MnF_4}, a classical Heisenberg antiferromagnet in two-dimensions with dipolar interaction

    Full text link
    We study the phase diagram of a quasi-two dimensional magnetic system Rb2MnF4{\rm Rb_2MnF_4} with Monte Carlo simulations of a classical Heisenberg spin Hamiltonian which includes the dipolar interactions between Mn2+{\rm Mn}^{2+} spins. Our simulations reveal an Ising-like antiferromagnetic phase at low magnetic fields and an XY phase at high magnetic fields. The boundary between Ising and XY phases is analyzed with a recently proposed finite size scaling technique and found to be consistent with a bicritical point at T=0. We discuss the computational techniques used to handle the weak dipolar interaction and the difference between our phase diagram and the experimental results.Comment: 13 pages 18 figure

    First-Matsubara-frequency rule in a Fermi liquid. Part II: Optical conductivity and comparison to experiment

    Full text link
    Motivated by recent optical measurements on a number of strongly correlated electron systems, we revisit the dependence of the conductivity of a Fermi liquid, \sigma(\Omega,T), on the frequency \Omega and temperature T. Using the Kubo formalism and taking full account of vertex corrections, we show that the Fermi liquid form Re\sigma^{-1}(\Omega,T)\propto \Omega^2+4\pi^2T^2 holds under very general conditions, namely in any dimensionality above one, for a Fermi surface of an arbitrary shape (but away from nesting and van Hove singularities), and to any order in the electron-electron interaction. We also show that the scaling form of Re\sigma^{-1}(\Omega,T) is determined by the analytic properties of the conductivity along the Matsubara axis. If a system contains not only itinerant electrons but also localized degrees of freedom which scatter electrons elastically, e.g., magnetic moments or resonant levels, the scaling form changes to Re\sigma^{-1}(\Omega,T)\propto \Omega^2+b\pi^2T^2, with 1\leq b<\infty. For purely elastic scattering, b =1. Our analysis implies that the value of b\approx 1, reported for URu_2Si_2 and some rare-earth based doped Mott insulators, indicates that the optical conductivity in these materials is controlled by an elastic scattering mechanism, whereas the values of b\approx 2.3 and b\approx 5.6, reported for underdoped cuprates and organics, correspondingly, imply that both elastic and inelastic mechanisms contribute to the optical conductivity.Comment: 18 pages, 10 figure

    Effect of disorder studied with ferromagnetic resonance for arrays of tangentially magnetized sub-micron Permalloy discs fabricated by nanosphere lithography

    Full text link
    Tangentially magnetized trigonal arrays of sub-micron Permalloy discs are characterized with ferromagnetic resonance to determine the possible contributions to frequency and linewidth from array disorder. Each array is fabricated by a water-surface self-assembly lithographic technique, and consists of a large trigonal array of 700 nm diameter magnetic discs. Each array is characterized by a different degree of ordering. Two modes are present in the ferromagnetic resonance spectra: a large amplitude, `fundamental' mode and a lower amplitude mode at higher field. Angular dependence of the resonance field in a very well ordered array is found to be negligible for both modes. The relationship between resonance frequency and applied magnetic field is found to be uncorrelated with array disorder. Linewidth is found to increase with increasing array disorder

    An Induction Accelerator of Cosmic Rays on the Axis of an Accretion Disk

    Get PDF
    The structure and magnitude of the electric field created by a rotating accretion disk with a poloidal magnetic field is found for the case of a vacuum approximation along the axis. The accretion disk is modeled as a torus filled with plasma and the frozen-in magnetic field. The dimensions and location of the maximum electric field are found, as well as the energy of the accelerated particles. The gravitational field is assumed to be weak.Comment: 10 pages, 4 figure

    Edge dislocations in crystal structures considered as traveling waves of discrete models

    Get PDF
    The static stress needed to depin a 2D edge dislocation, the lower dynamic stress needed to keep it moving, its velocity and displacement vector profile are calculated from first principles. We use a simplified discrete model whose far field distortion tensor decays algebraically with distance as in the usual elasticity. An analytical description of dislocation depinning in the strongly overdamped case (including the effect of fluctuations) is also given. A set of NN parallel edge dislocations whose centers are far from each other can depin a given one provided N=O(L)N=O(L), where LL is the average inter-dislocation distance divided by the Burgers vector of a single dislocation. Then a limiting dislocation density can be defined and calculated in simple cases.Comment: 10 pages, 3 eps figures, Revtex 4. Final version, corrected minor error

    Resonance Damping in Ferromagnets and Ferroelectrics

    Full text link
    The phenomenological equations of motion for the relaxation of ordered phases of magnetized and polarized crystal phases can be developed in close analogy with one another. For the case of magnetized systems, the driving magnetic field intensity toward relaxation was developed by Gilbert. For the case of polarized systems, the driving electric field intensity toward relaxation was developed by Khalatnikov. The transport times for relaxation into thermal equilibrium can be attributed to viscous sound wave damping via magnetostriction for the magnetic case and electrostriction for the polarization case.Comment: 5 pages no figures ReVTeX

    General-Relativistic Curvature of Pulsar Vortex Structure

    Get PDF
    The motion of a neutron superfluid condensate in a pulsar is studied. Several theorems of general-relativistic hydrodynamics are proved for a superfluid. The average density distribution of vortex lines in pulsars and their general-relativistic curvature are derived.Comment: 18 pages, 1 figure

    Environmental Decoherence versus Intrinsic Decoherence

    Full text link
    We review the difference between standard environmental decoherence and 'intrinsic decoherence', which is taken to be an ineluctable process of Nature. Environmental decoherence is typically modeled by spin bath or oscillator modes - we review some of the unanswered questions not captured by these models, and also the application of them to experiments. Finally, a sketch is given of a new theoretical approach to intrinsic decoherence, and this scheme is applied to the discussion of gravitational decoherence.Comment: to be published in Phil Trans Roy Soc
    • …
    corecore