115 research outputs found

    Chronic lymphocytic leukemia: molecular heterogeneity revealed by high-throughput genomics

    Get PDF
    Chronic lymphocytic leukemia (CLL) has been consistently at the forefront of genetic research owing to its prevalence and the accessibility of sample material. Recently, genome-wide technologies have been intensively applied to CLL genetics, with remarkable progress. Single nucleotide polymorphism arrays have identified recurring chromosomal aberrations, thereby focusing functional studies on discrete genomic lesions and leading to the first implication of somatic microRNA disruption in cancer. Next-generation sequencing (NGS) has further transformed our understanding of CLL by identifying novel recurrently mutated putative drivers, including the unexpected discovery of somatic mutations affecting spliceosome function. NGS has further enabled in-depth examination of the transcriptional and epigenetic changes in CLL that accompany genetic lesions, and has shed light on how different driver events appear at different stages of disease progression and clonally evolve with relapsed disease. In addition to providing important insights into disease biology, these discoveries have significant translational potential. They enhance prognosis by highlighting specific lesions associated with poor clinical outcomes (for example, driver events such as mutations in the splicing factor subunit gene SF3B1) or with increased clonal heterogeneity (for example, the presence of subclonal driver mutations). Here, we review new genomic discoveries in CLL and discuss their possible implications in the era of precision medicine

    Electrostatic Interactions of Asymmetrically Charged Membranes

    Full text link
    We predict the nature (attractive or repulsive) and range (exponentially screened or long-range power law) of the electrostatic interactions of oppositely charged and planar plates as a function of the salt concentration and surface charge densities (whose absolute magnitudes are not necessarily equal). An analytical expression for the crossover between attractive and repulsive pressure is obtained as a function of the salt concentration. This condition reduces to the high-salt limit of Parsegian and Gingell where the interaction is exponentially screened and to the zero salt limit of Lau and Pincus in which the important length scales are the inter-plate separation and the Gouy-Chapman length. In the regime of low salt and high surface charges we predict - for any ratio of the charges on the surfaces - that the attractive pressure is long-ranged as a function of the spacing. The attractive pressure is related to the decrease in counter-ion concentration as the inter-plate distance is decreased. Our theory predicts several scaling regimes with different scaling expressions for the pressure as function of salinity and surface charge densities. The pressure predictions can be related to surface force experiments of oppositely charged surfaces that are prepared by coating one of the mica surfaces with an oppositely charged polyelectrolyte

    Color singlet suppression of quark-gluon plasma formation

    Get PDF
    The rate of quark-gluon plasma droplet nucleation in superheated hadronic matter is calculated within the MIT bag model. The requirements of color singletness and (to less extent) fixed momentum suppress the nucleation rate by many orders of magnitude, making thermal nucleation of quark-gluon plasma droplets unlikely in ultrarelativistic heavy-ion collisions if the transition is first order and reasonably described by the bag model.Comment: 9 pages, 3 ps figures. To appear in PhysRevC (April 1996

    The Weak Gravity Conjecture and the Viscosity Bound with Six-Derivative Corrections

    Full text link
    The weak gravity conjecture and the shear viscosity to entropy density bound place constraints on low energy effective field theories that may help to distinguish which theories can be UV completed. Recently, there have been suggestions of a possible correlation between the two constraints. In some interesting cases, the behavior was precisely such that the conjectures were mutually exclusive. Motivated by these works, we study the mass to charge and shear viscosity to entropy density ratios for charged AdS5 black branes, which are holographically dual to four-dimensional CFTs at finite temperature. We study a family of four-derivative and six-derivative perturbative corrections to these backgrounds. We identify the region in parameter space where the two constraints are satisfied and in particular find that the inclusion of the next-to-leading perturbative correction introduces wider possibilities for the satisfaction of both constraints.Comment: 24 pages, 6 figures, v2: published version, refs added, minor clarificatio

    Weak pairwise correlations imply strongly correlated network states in a neural population

    Get PDF
    Biological networks have so many possible states that exhaustive sampling is impossible. Successful analysis thus depends on simplifying hypotheses, but experiments on many systems hint that complicated, higher order interactions among large groups of elements play an important role. In the vertebrate retina, we show that weak correlations between pairs of neurons coexist with strongly collective behavior in the responses of ten or more neurons. Surprisingly, we find that this collective behavior is described quantitatively by models that capture the observed pairwise correlations but assume no higher order interactions. These maximum entropy models are equivalent to Ising models, and predict that larger networks are completely dominated by correlation effects. This suggests that the neural code has associative or error-correcting properties, and we provide preliminary evidence for such behavior. As a first test for the generality of these ideas, we show that similar results are obtained from networks of cultured cortical neurons.Comment: Full account of work presented at the conference on Computational and Systems Neuroscience (COSYNE), 17-20 March 2005, in Salt Lake City, Utah (http://cosyne.org

    X-ray harmonic comb from relativistic electron spikes

    Get PDF
    X-ray devices are far superior to optical ones for providing nanometre spatial and attosecond temporal resolutions. Such resolution is indispensable in biology, medicine, physics, material sciences, and their applications. A bright ultrafast coherent X-ray source is highly desirable, for example, for the diffractive imaging of individual large molecules, viruses, or cells. Here we demonstrate experimentally a new compact X-ray source involving high-order harmonics produced by a relativistic-irradiance femtosecond laser in a gas target. In our first implementation using a 9 Terawatt laser, coherent soft X-rays are emitted with a comb-like spectrum reaching the 'water window' range. The generation mechanism is robust being based on phenomena inherent in relativistic laser plasmas: self-focusing, nonlinear wave generation accompanied by electron density singularities, and collective radiation by a compact electric charge. The formation of singularities (electron density spikes) is described by the elegant mathematical catastrophe theory, which explains sudden changes in various complex systems, from physics to social sciences. The new X-ray source has advantageous scalings, as the maximum harmonic order is proportional to the cube of the laser amplitude enhanced by relativistic self-focusing in plasma. This allows straightforward extension of the coherent X-ray generation to the keV and tens of keV spectral regions. The implemented X-ray source is remarkably easily accessible: the requirements for the laser can be met in a university-scale laboratory, the gas jet is a replenishable debris-free target, and the harmonics emanate directly from the gas jet without additional devices. Our results open the way to a compact coherent ultrashort brilliant X-ray source with single shot and high-repetition rate capabilities, suitable for numerous applications and diagnostics in many research fields

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Dipolar cortico-muscular electrical stimulation: a novel method that enhances motor function in both - normal and spinal cord injured mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Electrical stimulation of the central and peripheral nervous systems is a common tool that is used to improve functional recovery after neuronal injury.</p> <p>Methods</p> <p>Here we described a new configuration of electrical stimulation as it was tested in anesthetized control and spinal cord injury (SCI) mice. Constant voltage output was delivered through two electrodes. While the negative voltage output (ranging from -1.8 to -2.6 V) was delivered to the muscle via transverse wire electrodes (diameter, 500 μm) located at opposite ends of the muscle, the positive output (ranging from + 2.4 to +3.2 V) was delivered to the primary motor cortex (M1) (electrode tip, 100 μm). The configuration was named dipolar cortico-muscular stimulation (dCMS) and consisted of 100 pulses (1 ms pulse duration, 1 Hz frequency).</p> <p>Results</p> <p>In SCI animals, after dCMS, cortically-elicited muscle contraction improved markedly at the contralateral (456%) and ipsilateral (457%) gastrocnemius muscles. The improvement persisted for the duration of the experiment (60 min). The enhancement of cortically-elicited muscle contraction was accompanied by the reduction of M1 maximal threshold and the potentiation of spinal motoneuronal evoked responses at the contralateral (313%) and ipsilateral (292%) sides of the spinal cord. Moreover, spontaneous activity recorded from single spinal motoneurons was substantially increased contralaterally (121%) and ipsilaterally (54%). Interestingly, spinal motoneuronal responses and muscle twitches evoked by the test stimulation of non-treated M1 (received no dCMS) were significantly enhanced as well. Similar results obtained from normal animals albeit the changes were relatively smaller.</p> <p>Conclusion</p> <p>These findings demonstrated that dCMS could improve functionality of corticomotoneuronal pathway and thus it may have therapeutic potential.</p

    A Unique Modification of the Eukaryotic Initiation Factor 5A Shows the Presence of the Complete Hypusine Pathway in Leishmania donovani

    Get PDF
    Deoxyhypusine hydroxylase (DOHH) catalyzes the final step in the post-translational synthesis of an unusual amino acid hypusine (N€-(4-amino-2-hydroxybutyl) lysine), which is present on only one cellular protein, eukaryotic initiation factor 5A (eIF5A). We present here the molecular and structural basis of the function of DOHH from the protozoan parasite, Leishmania donovani, which causes visceral leishmaniasis. The L. donovani DOHH gene is 981 bp and encodes a putative polypeptide of 326 amino acids. DOHH is a HEAT-repeat protein with eight tandem repeats of α-helical pairs. Four conserved histidine-glutamate sequences have been identified that may act as metal coordination sites. A ∼42 kDa recombinant protein with a His-tag was obtained by heterologous expression of DOHH in Escherichia coli. Purified recombinant DOHH effectively catalyzed the hydroxylation of the intermediate, eIF5A-deoxyhypusine (eIF5A-Dhp), in vitro. L. donovani DOHH (LdDOHH) showed ∼40.6% sequence identity with its human homolog. The alignment of L. donovani DOHH with the human homolog shows that there are two significant insertions in the former, corresponding to the alignment positions 159-162 (four amino acid residues) and 174-183 (ten amino acid residues) which are present in the variable loop connecting the N- and C-terminal halves of the protein, the latter being present near the substrate binding site. Deletion of the ten-amino-acid-long insertion decreased LdDOHH activity to 14% of the wild type recombinant LdDOHH. Metal chelators like ciclopirox olamine (CPX) and mimosine significantly inhibited the growth of L. donovani and DOHH activity in vitro. These inhibitors were more effective against the parasite enzyme than the human enzyme. This report, for the first time, confirms the presence of a complete hypusine pathway in a kinetoplastid unlike eubacteria and archaea. The structural differences between the L. donovani DOHH and the human homolog may be exploited for structure based design of selective inhibitors against the parasite
    corecore