248 research outputs found
Transient x-ray absorption spectroscopy of hydrated halogen atom
Time-resolved x-ray absorption spectroscopy monitors the transient species
generated by one-photon detachment of an electron from aqueous bromide.
Hydrated bromine atoms with a lifetime of ca. 17 ns were observed, nearly half
of which react with excess Br- to form Br2-. The K-edge spectra of the Br atom
and Br2- anion exhibit distinctive resonant transitions that are absent for the
Br- precursor. The absorption spectra indicate that the solvent shell around a
Br0 atom is defined primarily by hydrophobic interactions, in agreement with a
Monte Carlo simulation of the solvent structure.Comment: 6 pages, 4 figures + supplement, will be submitted to PR
Development of an X-band Photoinjector at SLAC
As part of a National Cancer Institute contract to develop a compact source
of monoenergetic X-rays via Compton backscattering, we have completed the
design and construction of a 5.5 cell Photoinjector operating at 11.424 GHz.
Successful completion of this project will result in the capability of
generating a monoenergetic X-ray beam, continuously tunable from 20 - 85 KeV.
The immediate goal is the development of a Photoinjector producing 7 MeV, 0.5
nC, sub-picosecond electron bunches with normalized RMS emittances of
approximately 1 pi-mm-mR at repetition rates up to 60 Hz. This beam will then
be further accelerated to 60 MeV using a 1.05 m accelerating structure. This
Photoinjector is somewhat different than the traditional 1.5 cell design both
because of the number of cells and the symmetrically fed input coupler cell.
Its operating frequency is also unique. Since the cathode is non-removable,
cold-test tuning was somewhat more difficult than in other designs. We will
present results of "bead-drop" measurements used in tuning this structure.
Initial beam measurements are currently in progress and results will be
presented as well as results of RF conditioning to high gradients at X-band.
Details of the RF system, emittance-compensating solenoid, and cathode laser
system as well as PARMELA simulations will also be presented.Comment: 3 pages, 6 figures, 1 Table, LINAC 200
Transient x-ray absorption spectroscopy of hydrated halogen atom
This is the publisher's version, also available electronically from http://scitation.aip.org/content/aip/journal/jcp/128/6/10.1063/1.2827456.Time-resolved x-ray absorption spectroscopy has been used to observe the transient species generated by one-photon detachment of an electron from aqueous bromide. The K-edge spectrum of the short-lived Br(0) atom exhibits a resonant 1s-4p transition that is absent for the Brâ precursor. The strong 1s-4p resonance suggests that there is very little charge transfer from the solvent to the open-shell atom, whereas weak oscillations above the absorption edge indicate that the solvent shell around a neutral Br(0) atom is defined primarily by hydrophobic interactions. These conclusions are in agreement with Monte Carlo and quantum chemical simulations of the solvent structure
Tricolored Lattice Gauge Theory with Randomness: Fault-Tolerance in Topological Color Codes
We compute the error threshold of color codes, a class of topological quantum
codes that allow a direct implementation of quantum Clifford gates, when both
qubit and measurement errors are present. By mapping the problem onto a
statistical-mechanical three-dimensional disordered Ising lattice gauge theory,
we estimate via large-scale Monte Carlo simulations that color codes are stable
against 4.5(2)% errors. Furthermore, by evaluating the skewness of the Wilson
loop distributions, we introduce a very sensitive probe to locate first-order
phase transitions in lattice gauge theories.Comment: 12 pages, 5 figures, 1 tabl
Topological quantum memory
We analyze surface codes, the topological quantum error-correcting codes
introduced by Kitaev. In these codes, qubits are arranged in a two-dimensional
array on a surface of nontrivial topology, and encoded quantum operations are
associated with nontrivial homology cycles of the surface. We formulate
protocols for error recovery, and study the efficacy of these protocols. An
order-disorder phase transition occurs in this system at a nonzero critical
value of the error rate; if the error rate is below the critical value (the
accuracy threshold), encoded information can be protected arbitrarily well in
the limit of a large code block. This phase transition can be accurately
modeled by a three-dimensional Z_2 lattice gauge theory with quenched disorder.
We estimate the accuracy threshold, assuming that all quantum gates are local,
that qubits can be measured rapidly, and that polynomial-size classical
computations can be executed instantaneously. We also devise a robust recovery
procedure that does not require measurement or fast classical processing;
however for this procedure the quantum gates are local only if the qubits are
arranged in four or more spatial dimensions. We discuss procedures for
encoding, measurement, and performing fault-tolerant universal quantum
computation with surface codes, and argue that these codes provide a promising
framework for quantum computing architectures.Comment: 39 pages, 21 figures, REVTe
Error mitigation, optimization, and extrapolation on a trapped ion testbed
Current noisy intermediate-scale quantum (NISQ) trapped-ion devices are
subject to errors around 1% per gate for two-qubit gates. These errors
significantly impact the accuracy of calculations if left unchecked. A form of
error mitigation called Richardson extrapolation can reduce these errors
without incurring a qubit overhead. We demonstrate and optimize this method on
the Quantum Scientific Computing Open User Testbed (QSCOUT) trapped-ion device
to solve an electronic structure problem. We explore different methods for
integrating this error mitigation technique into the Variational Quantum
Eigensolver (VQE) optimization algorithm for calculating the ground state of
the HeH+ molecule at 0.8 Angstrom. We test two methods of scaling noise for
extrapolation: time-stretching the two-qubit gates and inserting two-qubit gate
identity operations into the ansatz circuit. We find the former fails to scale
the noise on our particular hardware. Scaling our noise with global gate
identity insertions and extrapolating only after a variational optimization
routine, we achieve an absolute relative error of 0.363% +- 1.06 compared to
the true ground state energy of HeH+. This corresponds to an absolute error of
0.01 +- 0.02 Hartree; outside chemical accuracy, but greatly improved over our
non error mitigated estimate. We ultimately find that the efficacy of this
error mitigation technique depends on choosing the right implementation for a
given device architecture and sampling budget.Comment: 16 pages, 11 figure
Implications of Electronics Constraints for Solid-State Quantum Error Correction and Quantum Circuit Failure Probability
In this paper we present the impact of classical electronics constraints on a
solid-state quantum dot logical qubit architecture. Constraints due to routing
density, bandwidth allocation, signal timing, and thermally aware placement of
classical supporting electronics significantly affect the quantum error
correction circuit's error rate. We analyze one level of a quantum error
correction circuit using nine data qubits in a Bacon-Shor code configured as a
quantum memory. A hypothetical silicon double quantum dot quantum bit (qubit)
is used as the fundamental element. A pessimistic estimate of the error
probability of the quantum circuit is calculated using the total number of
gates and idle time using a provably optimal schedule for the circuit
operations obtained with an integer program methodology. The micro-architecture
analysis provides insight about the different ways the electronics impact the
circuit performance (e.g., extra idle time in the schedule), which can
significantly limit the ultimate performance of any quantum circuit and
therefore is a critical foundation for any future larger scale architecture
analysis.Comment: 10 pages, 7 figures, 3 table
On self-sustaining processes in Rayleigh-stable rotating plane Couette flows and subcritical transition to turbulence in accretion disks
Subcritical transition to turbulence in Keplerian accretion disks is still a
controversial issue and some theoretical progress is required in order to
determine whether or not this scenario provides a plausible explanation for the
origin of angular momentum transport in non-magnetized accretion disks.
Motivated by the recent discoveries of exact nonlinear steady self-sustaining
solutions in linearly stable non-rotating shear flows, we attempt to compute
similar solutions in Rayleigh-stable rotating plane Couette flows and to
identify transition mechanisms in such flows by combining nonlinear
continuation methods and asymptotic theory. We obtain exact nonlinear solutions
for Rayleigh-stable cyclonic regimes but show that it is not possible to
compute solutions for Rayleigh-stable anticyclonic regimes, including Keplerian
flow, using similar techniques. We also present asymptotic descriptions of
these various problems at large Reynolds numbers that provide some insight into
the differences between the non-rotating and Rayleigh-stable anticyclonic
regimes and derive some necessary conditions for mechanisms analogous to the
non-rotating self-sustaining process to be present in flows on the Rayleigh
line. Our results demonstrate that subcritical transition mechanisms cannot be
identified in wall-bounded Rayleigh-stable anticyclonic shear flows by
transposing directly the phenomenology of subcritical transition in cyclonic
and non-rotating wall-bounded shear flows. Asymptotic developments, however,
leave open the possibility that nonlinear self-sustaining solutions may exist
in unbounded or periodic flows on the Rayleigh line. These could serve as a
starting point to discover solutions in Rayleigh-stable flows, but the
nonlinear stability of Keplerian accretion disks remains to be determined.Comment: 16 pages, 12 figures. Accepted for publication in A&
Generalized Toric Codes Coupled to Thermal Baths
We have studied the dynamics of a generalized toric code based on qudits at
finite temperature by finding the master equation coupling the code's degrees
of freedom to a thermal bath. As a consequence, we find that for qutrits new
types of anyons and thermal processes appear that are forbidden for qubits.
These include creation, annihilation and diffusion throughout the system code.
It is possible to solve the master equation in a short-time regime and find
expressions for the decay rates as a function of the dimension of the
qudits. Although we provide an explicit proof that the system relax to the
Gibbs state for arbitrary qudits, we also prove that above a certain crossing
temperature, qutrits initial decay rate is smaller than the original case for
qubits. Surprisingly this behavior only happens with qutrits and not with other
qudits with .Comment: Revtex4 file, color figures. New Journal of Physics' versio
- âŠ