4,896 research outputs found

    Discrete Symmetries of Off-Shell Electromagnetism

    Full text link
    We discuss the discrete symmetries of the Stueckelberg-Schrodinger relativistic quantum theory and its associated 5D local gauge theory, a dynamical description of particle/antiparticle interactions, with monotonically increasing Poincare-invariant parameter. In this framework, worldlines are traced out through the parameterized evolution of spacetime events, advancing or retreating with respect to the laboratory clock, with negative energy trajectories appearing as antiparticles when the observer describes the evolution using the laboratory clock. The associated gauge theory describes local interactions between events (correlated by the invariant parameter) mediated by five off-shell gauge fields. These gauge fields are shown to transform tensorially under under space and time reflections, unlike the standard Maxwell fields, and the interacting quantum theory therefore remains manifestly Lorentz covariant. Charge conjugation symmetry in the quantum theory is achieved by simultaneous reflection of the sense of evolution and the fifth scalar field. Applying this procedure to the classical gauge theory leads to a purely classical manifestation of charge conjugation, placing the CPT symmetries on the same footing in the classical and quantum domains. In the resulting picture, interactions do not distinguish between particle and antiparticle trajectories -- charge conjugation merely describes the interpretation of observed negative energy trajectories according to the laboratory clock.Comment: 26 page

    Editorial: Throwing Shoes

    Get PDF

    Duality in Off-Shell Electromagnetism

    Full text link
    In this paper, we examine the Dirac monopole in the framework of Off-Shell Electromagnetism, the five dimensional U(1) gauge theory associated with Stueckelberg-Schrodinger relativistic quantum theory. After reviewing the Dirac model in four dimensions, we show that the structure of the five dimensional theory prevents a natural generalization of the Dirac monopole, since the theory is not symmetric under duality transformations. It is shown that the duality symmetry can be restored by generalizing the electromagnetic field strength to an element of a Clifford algebra. Nevertheless, the generalized framework does not permit us to recover the phenomenological (or conventional) absence of magnetic monopoles.Comment: 18 page

    Computer-assisted ex vivo, normothermic small bowel perfusion

    Get PDF
    Background: In the present study, a technique for computer-assisted, normothermic, oxygenated, ex vivo, recirculating small bowel perfusion was established as a tool to investigate organ pretreatment protocols and ischemia/reperfusion phenomena. A prerequisite for the desired setup was an organ chamber for ex vivo perfusion and the use of syngeneic whole blood as perfusate. Methods: The entire small bowel was harvested from Lewis rats and perfused in an organ chamber ex vivo for at least 2 h. The temperature was kept at 37 degrees C in a water bath. Three experimental groups were explored, characterized by different perfusion solutions. The basic perfusate consisted of syngeneic whole blood diluted with either NaCl, Krebs' solution or Krebs' solution and norepinephrine to a hematocrit of 30%. In addition, in each group l-glutamine was administered intraluminally. The desired perfusion pressure was 100 mm Hg which was kept constant with a computer-assisted data acquisition software, which measured an-line pressure, oxygenation, flow, temperature and pH and adjusted the pressure by changing the flow via a peristaltic pump. The viability of the preparation was tested by measuring oxygen consumption and maltose absorption, which requires intact enzymes of the mucosal brush border to break down maltose into glucose. Results: Organ perfusion in group 1 (dilution with NaCl) revealed problems such as hypersecretion into the bowel lumen, low vascular resistance and no maltose uptake. In contrast a viable organ could be demonstrated using Krebs' solution as dilution solution. The addition of norepinephrine led to an improved perfusion over the entire perfusion period. Maltose absorption was comparable to tests conducted with native small bower. Oxygen consumption was stable during the 2-hour perfusion period. Conclusions: The ex vivo perfusion system established enables small bowel perfusion for at least 2 h. The viability of the graft could be demonstrated. The perfusion time achieved is sufficient to study leukocyte/lymphocyte interaction with the endothelium of the graft vessels. In addition, a viable small bowel, after 2 h of ex vivo perfusion, facilitates testing of pretreatment protocols for the reduction of the immunogenicity of small bowel allografts. Copyright (C) 2000 S. Karger AG, Basel

    Spatial facilitation by a high-performance dragonfly target-detecting neuron

    Get PDF
    Many animals visualize and track small moving targets at long distances—be they prey, approaching predators or conspecifics. Insects are an excellent model system for investigating the neural mechanisms that have evolved for this challenging task. Specialized small target motion detector (STMD) neurons in the optic lobes of the insect brain respond strongly even when the target size is below the resolution limit of the eye. Many STMDs also respond robustly to small targets against complex stationary or moving backgrounds. We hypothesized that this requires a complex mechanism to avoid breakthrough responses by background features, and yet to adequately amplify the weak signal of tiny targets. We compared responses of dragonfly STMD neurons to small targets that begin moving within the receptive field with responses to targets that approach the same location along longer trajectories. We find that responses along longer trajectories are strongly facilitated by a mechanism that builds up slowly over several hundred milliseconds. This allows the neurons to give sustained responses to continuous target motion, thus providing a possible explanation for their extraordinary sensitivity
    • …
    corecore