153 research outputs found

    Relationship between measurement uncertainty and verifiability of geometric specifications: the case study of drilled hole orthogonality

    Get PDF
    In mechanical design, geometrical specifications and dimensional tolerances are commonly used to avoid final product malfunction and to allow for assembly integration. Geometric specification usage, in particular, has many manufacturing and durability implications, the feasibility of their measurement and verification, however, is often neglected and the influence of measurement uncertainty in their evaluation underestimated. Often geometrical specifications are defined without considering measurement uncertainties, or measurability at all: it is not uncommon to find approved specifications prescribing unverifiable geometry, or dimension tolerances that exceed state-of-art measurements. This article explores the case study of orthogonality between a circular hole and the plane on which it is drilled, evaluated using a Coordinate Measuring Machine. Such specification is defined, according to ISO 14253, as the angle between the plane normal and cylinder axis. Uncertainty of points coordinates obtained can, however small, play a key role in the final evaluation of orthogonality: if the specified tolerance is thigh enough it is also possible to have misalignment uncertainty higher than the tolerance itself. The authors propose the results of a mathematical and numerical model, meant to help the designer to define specification to assess the relationship between cylinder-plane misalignment measurability, CMM uncertainty and features dimensions

    Instrumented crutches for gait parameters evaluation

    Get PDF
    Most of the prototypes of instrumented crutches available in the literature require external motion capture devices to perform a gait analysis and to report the load applied on the crutches with respect to the gait cycle. Motion capture systems with markers require a controlled laboratory with cameras, instead IMU-based systems are more transportable, but the user must be instrumented. A new version of instrumented crutches, previously developed by the authors, allows one to measure the axial forces and to detect the gait phases during two-point assisted walking thanks to the cameras mounted on the lower part of the crutches

    Validation of a smart mirror for gesture recognition in gym training performed by a vision-based deep learning system

    Get PDF
    This paper illustrates the development and validation of a smart mirror for sports training. The application is based on the skeletonization algorithm MediaPipe and runs on an embedded device Nvidia Jetson Nano equipped with two fisheye cameras. The software has been evaluated considering the exercise biceps curl. The elbow angle has been measured by both MediaPipe and the motion capture system BTS (ground truth), and the resulting values have been compared to determine angle uncertainty, residual errors, and intra-subject and inter-subject repeatability. The uncertainty of the joints’ estimation and the quality of the image captured by the cameras reflect on the final uncertainty of the indicator over time, highlighting the areas of improvement for further development

    Monte Carlo-based 3D surface point cloud volume estimation by exploding local cubes faces

    Get PDF
    This article proposes a state-of-the-art algorithm for estimating the 3D volume enclosed in a surface point cloud via a modified extension of the Monte Carlo integration approach. The algorithm consists of a pre-processing of the surface point cloud, a sequential generation of points managed by an affiliation criterion, and the final computation of the volume. The pre-processing phase allows a spatial reorientation of the original point cloud, the evaluation of the homogeneity of its points distribution, and its enclosure inside a rectangular parallelepiped of known volume. The affiliation criterion using the explosion of cube faces is the core of the algorithm, handles the sequential generation of points, and proposes the effective extension of the traditional Monte Carlo method by introducing its applicability to the discrete domains. Finally, the final computation estimates the volume as a function of the total amount of generated points, the portion enclosed within the surface point cloud, and the parallelepiped volume. The developed method proves to be accurate with surface point clouds of both convex and concave solids reporting an average percentage error of less than 7 %. It also shows considerable versatility in handling clouds with sparse, homogeneous, and sometimes even missing points distributions. A performance analysis is presented by testing the algorithm on both surface point clouds obtained from meshes of virtual objects as well as from real objects reconstructed using reverse engineering techniques

    Misura dell'orientamento di pezzi meccanici a geometria variabile tramite Machine Learning - sviluppo algoritmi e validazione metrologica

    Get PDF
    L’identificazione corretta della posizione e dell’orientamento di pezzi meccanici a geometria variabile è uno dei maggiori problemi nelle applicazioni di pick & place in ambito industriale. Riuscire a identificare correttamente il modo in cui il pezzo oggetto della misura è posizionato in modo da riuscire a prenderlo e spostarlo risulta fondamentale nei processi industriali automatici in cui sono presenti numerose celle robotiche tra una macchina utensile e l’altra. Il problema viene spesso affrontato tramite tecniche basate su visione 2D che, però, presentano dei limiti quando i pezzi meccanici da prelevare possiedono una geometria tale da uscire dal dominio bidimensionale. Parallelamente, l’approccio 3D presenta una problematica legata soprattutto alla geometria variabile, che non consente lo sviluppo di un algoritmo robusto per l’identificazione del posizionamento del pezzo. Per superare queste limitazioni, negli ultimi anni sono state sviluppate tecniche di misura basate su machine learning che consentono di arginare i problemi legati alla variabilità della geometria. La presente memoria descrive lo sviluppo di un algoritmo di misura della posizione e dell’orientamento di pezzi meccanici di geometria variabile. I pezzi meccanici considerati sono stati ricavati da operazioni di stampaggio e presentano bave sul contorno che rendono gli approcci standard inefficaci e poco accurati nella misura. Per questo motivo, è stato sviluppato un algoritmo di misura che sfrutta una combinazione di tecniche di machine learning e tecniche classiche di visione 3D che permette di ottenere la matrice di rototraslazione dei pezzi oggetti della misura rispetto al relativo modello CAD di progettazione. Grazie alla matrice di rototraslazione ottenuta, è possibile fornire al robot la posizione accurata di alcuni punti scelti manualmente e utilizzati dal robot stesso per effettuare la presa del pezzo. L’algoritmo sviluppato opera su una nuvola di punti 3D del pezzo meccanico comprensivo di bave. Una volta effettuata la scansione sono previste diverse fasi: (i) ritaglio automatico della nuvola in modo da ricavarne solamente il pezzo in esame, (ii) rimozione automatica delle blob di punti identificate come outlier rispetto alla nuvola del pezzo, (iii) identificazione della posa del pezzo meccanico tramite classificatore basato su machine learning, (iv) allineamento grossolano tra pezzo meccanico (SCAN) e il relativo modello di riferimento (RIF) tramite analisi PCA (Principal Component Analysis) e (v) allineamento fine tra pezzo meccanico e modello CAD tramite algoritmo ICP (Iterative Closest Point)

    Experimental Procedure for the Metrological Characterization of Time-of-Flight Cameras for Human Body 3D Measurements

    Get PDF
    Time-of-flight cameras are widely adopted in a variety of indoor applications ranging from industrial object measurement to human activity recognition. However, the available products may differ in terms of the quality of the acquired point cloud, and the datasheet provided by the constructors may not be enough to guide researchers in the choice of the perfect device for their application. Hence, this work details the experimental procedure to assess time-of-flight cameras' error sources that should be considered when designing an application involving time-of-flight technology, such as the bias correction and the temperature influence on the point cloud stability. This is the first step towards a standardization of the metrological characterization procedure that could ensure the robustness and comparability of the results among tests and different devices. The procedure was conducted on Kinect Azure, Basler Blaze 101, and Basler ToF 640 cameras. Moreover, we compared the devices in the task of 3D reconstruction following a procedure involving the measure of both an object and a human upper-body-shaped mannequin. The experiment highlighted that, despite the results of the previously conducted metrological characterization, some devices showed evident difficulties in reconstructing the target objects. Thus, we proved that performing a rigorous evaluation procedure similar to the one proposed in this paper is always necessary when choosing the right device

    Validazione di algoritmi di calibrazione estrinseca basati su skeletonization del corpo umano

    Get PDF
    La presente memoria descrive le procedure utilizzate per la valutazione metrologica di procedure di calibrazione estrinseca di sistemi di visione composti da più telecamere. Viene definita calibrazione estrinseca quella procedura che consente di calcolare posizione ed orientamento di ogni telecamera presente in un sistema multicamera rispetto a tutte le altre. I metodi di calibrazione estrinseca si possono dividere principalmente in tre gruppi: tradizionali, basati sul riconoscimento di forme tridimensionali e basati su skeletonization. I metodi di calibrazione tradizionali si basano sull’utilizzo di target di calibrazione noti (scacchiere, griglie di punti, frange, etc) che vengono riconosciuti automaticamente dal sistema. Il sistema misura la posizione dei punti caratteristici del target ottenendo in questo modo i parametri di rotazione e traslazione desiderati. I metodi basati sul riconoscimento di forme tridimensionali (3D shape matching) sono invece fondati sulla coerenza geometrica di un oggetto 3D posizionato nel campo di vista delle varie telecamere: ciascun dispositivo registra una parte dell’oggetto target e successivamente, allineando ciascuna vista con le rimanenti, ed analizzando la traiettoria dell’oggetto vista da ogni telecamera è possibile risalire alle matrici di calibrazione. I metodi di calibrazione tradizionali, così come quelli basati su 3D shape matching risultano svantaggiosi in termini di tempo di esecuzione. Inoltre, queste tipologie necessitano di un target di calibrazione. Infine, i metodi basati sul riconoscimento dello scheletro umano (skeleton-based) utilizzano come target di calibrazione direttamente le articolazioni (joint) di un operatore che si posiziona all’interno del campo di vista delle telecamere. I metodi skeleton-based rappresentano quindi un’evoluzione dei metodi di 3D shape matching in quanto è come se venissero considerate forme 3D multiple rappresentate dai segmenti corporei dell’operatore stesso. Risulta quindi possibile ottenere una calibrazione estrinseca senza alcun oggetto caratteristico, ma semplicemente utilizzando il corpo dell’operatore umano come oggetto stesso. Nonostante in letteratura siano presenti lavori relativi alla valutazione dell’accuratezza nella misura dei joint, non sono presenti lavori che mostrano come questa accuratezza venga propagata a livello di matrici di rototraslazione risultanti dalla procedura di calibrazione. Il presente lavoro descrive le procedure utilizzate per valutare l’affidabilità della calibrazione estrinseca ottenuta tramite le posizioni dei joint misurate tramite il metodo di skeletonization descritto in [3]

    Misura delle fasi del passo tramite algoritmi di machine learning durante camminate in esterna assistite da esoscheletro

    Get PDF
    Negli ultimi anni si è assistito ad uno sviluppo sempre maggiore di dispositivi robotici indossabili (esoscheletri) per il supporto degli arti inferiori, che permettono ad utilizzatori paraplegici di tornare a camminare. L’utilizzo di questi esoscheletri è purtroppo spesso limitato all’interno di laboratori specializzati muniti di diversi tipi di trasduttori per l’analisi della cinematica e della dinamica della camminata assistita. È noto che le performance nell’utilizzo di questi esoscheletri migliora notevolmente quando il paziente cammina in un ambiente maggiormente “user-friendly” quale ad esempio l’ambiente esterno. Secondo questa logica, durante gli scorsi anni, sono state sviluppate all’interno del nostro gruppo di ricerca delle stampelle strumentate in grado di misurare sia il carico scambiato tra stampella e piano d’appoggio della stessa, sia la fase del passo (stance o swing) in cui si trova l’utilizzatore dell’esoscheletro. In questo modo il fisioterapista è in grado di valutare la qualità della camminata del paziente in relazione alla fase del passo che sta attualmente svolgendo. L’algoritmo di misura della fase del passo è stato validato in un ambiente interno mostrando risultati incoraggianti: si è ottenuta una accuratezza di classificazione pari all’85% (deviazione standard pari al 3%). La presente memoria descrive la procedura di validazione dell’algoritmo per la misura delle fasi del passo durante prove di camminata assistite svolte in ambiente esterno, in diverse condizioni

    Gesture recognition per robotica collaborativa: primo approccio

    Get PDF
    Con il nuovo paradigma di Industria 4.0 si introducono i robot collaborativi, che condividono l’area di lavoro con l’operatore. Risulta necessario non solo elaborare adeguate strategie per assicurare la sicurezza degli operatori, ma anche metodi efficaci per comunicare con i robot collaborativi in modo naturale, tramite comandi vocali o gesti. Come primo approccio al problema della comunicazione umano-robot si è adottato un sistema di riconoscimento gesti basato su un algoritmo di Deep Learning, sviluppato sulla piattaforma MATLAB 2017b, in grado di riconoscere quattro diversi tipi di gesto a partire da immagini RGB, come riportato in Fig. 1. I gesti proposti sono caratterizzati da tre condizioni: devono essere eseguiti usando entrambe le mani con la sinistra chiusa a pugno, il più possibile alla stessa altezza e non troppo distanti tra loro. Il sistema è stato testato offline su quattro diversi dataset acquisiti sperimentalmente per valutare le performance in diverse condizioni. L’applicazione è stata poi testata in real-time per valutare la velocità del sistema nell’effettuare i riconoscimenti

    Effect of chestnut tannins and short chain fatty acids as anti-microbials and as feeding supplements in broilers rearing and meat quality

    Get PDF
    Chestnut tannins (CT) and saturated short medium chain fatty acids (SMCFA) are valid alternatives to contrast the growth of pathogens in poultry rearing, representing a valid alternative to antibiotics. However, the effect of their blends has never been tested. Two blends of CT extract and Sn1-monoglycerides of SMCFA (SN1) were tested in vitro against the proliferation of Clostridium perfringens, Salmonella typhymurium, Escherichia coli, Campylobacter jejuni. The tested concentrations were: 3.0 g/kg of CT; 3.0 g/kg of SN1; 2.0 g/kg of CT and 1.0 g/kg of SN1; 1.0 g/kg of CT and 2.0 g/kg of SN1. Furthermore, their effect on broiler performances and meat quality was evaluated in vivo: one-hundred Ross 308 male birds were fed a basal diet with no supplement (control group) or supplemented with CT or SN1 or their blends at the same concentration used in the in vitro trial. The in vitro assay confirmed the effectiveness of the CT and SN1 mixtures in reducing the growth of the tested bacteria while the in vivo trial showed that broiler performances, animal welfare and meat quality were not negatively affected by the blends, which could be a promising alternative in replacing antibiotics in poultry production
    • …
    corecore