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Abstract: Time-of-flight cameras are widely adopted in a variety of indoor applications ranging
from industrial object measurement to human activity recognition. However, the available products
may differ in terms of the quality of the acquired point cloud, and the datasheet provided by the
constructors may not be enough to guide researchers in the choice of the perfect device for their
application. Hence, this work details the experimental procedure to assess time-of-flight cameras’
error sources that should be considered when designing an application involving time-of-flight
technology, such as the bias correction and the temperature influence on the point cloud stability.
This is the first step towards a standardization of the metrological characterization procedure that
could ensure the robustness and comparability of the results among tests and different devices. The
procedure was conducted on Kinect Azure, Basler Blaze 101, and Basler ToF 640 cameras. Moreover,
we compared the devices in the task of 3D reconstruction following a procedure involving the
measure of both an object and a human upper-body-shaped mannequin. The experiment highlighted
that, despite the results of the previously conducted metrological characterization, some devices
showed evident difficulties in reconstructing the target objects. Thus, we proved that performing a
rigorous evaluation procedure similar to the one proposed in this paper is always necessary when
choosing the right device.

Keywords: machine vision; human-body reconstruction; time-of-flight; metrological characterization;
Azure Kinect; Basler Blaze 101

1. Introduction

Since the fourth industrial revolution started, industrial manufacturing technologies
have evolved rapidly. Robots and machines are now equipped with intelligence and sens-
ing devices such as cameras to see their environment. This is especially important when the
machine operates alongside human workers. Therefore, the human body reconstruction
capability of the camera is necessary for safety reasons and to guarantee the correct execu-
tion of detection and monitoring software. Typically, RGB cameras are the common choice
for most industrial applications due to their competitive prices and low computational
complexity. However, they lack information about the actual dimension of the environment,
the relative distance of objects and their volume. Therefore, for some applications, 3D
cameras are best suited for the task.

Three-dimensional cameras have been intensively adopted for years as measurement
systems in a wide variety of applications. The exploited technologies are structured light,
stereoscopy, and time-of-flight [1,2]. Time-of-flight (ToF) cameras are optical devices that
measure the distance of objects from the sensor based on the calculation of the elapsed
time between the emission/reflection of a light source. Compared to stereoscopy-based
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devices, they are best suited for indoor environments due to the possible interference from
direct natural light. However, the depth image obtained from these devices is affected
by artifacts due to quantization in the range of low amplitudes. This issue affects ToF
technology due to large operating distances and low reflectivity. Moreover, the presence of
bias and other systematic errors is caused by anharmonic signals and overexposure [3,4].
Illumination conditions, such as the target’s color properties and material reflectivity, are
external error sources that cause depth errors, which increase linearly with distance [5].
Other common artifacts are flying pixels (erroneous depth estimates that appear close to
the edge discontinuities in depth data) and multipath errors [6,7].

Two types of ToF cameras are available on the market: consumer-end and industrial.
The main difference lies in the communication protocol: a Gigabit Ethernet connection is
adopted by industrial cameras in contrast to USB 3.0 available in consumer-end devices.
Industrial cameras are specifically designed for harsh environments; hence, the sensor and
its lenses are encapsulated in a high-protection cover adhering to the IP protection index
standard. They are typically adopted to reconstruct objects with high accuracy in controlled
illumination and temperature conditions to guarantee the best performance. As such, their
performance is often unsatisfactory at high distances and for moving subjects. In contrast,
consumer-end devices are best suited for human activities, also thanks to the gaming
industry, which intensively adopted this technology to enhance their user experience.
As a result, consumer-end devices are compact and easy to use. Their 3D reconstruction
capabilities are worse in terms of the accuracy of small objects and unusual surface materials;
however, they work well with moving subjects. The most famous consumer-end device is
the one developed by Microsoft, which has been improved over the years. Since the release
of the Microsoft Kinect v2 sensor [8] in 2013, this commercial device has been intensively
used for research purposes due to its affordability and performance [9]. For example, it
has been used in 3D reconstruction for object modeling [10–13] and indoor scenes [14,15]
and mobile robots’ navigation and mapping [16–19]. The industrial applications include
palletizing tasks [20,21], safety [22–24], teleoperation [25,26], human body detection and
tracking [27–29], and gesture recognition tasks [30–32]. Healthcare applications involve
gait analysis and elderly monitoring [33–36], the reconstruction of human body kinematics
thanks to augmented and virtual reality software based on Kinect v2 [37,38]. However,
Microsoft interrupted the production of Kinect v2 devices in favor of its new product
Kinect Azure released in 2020. Currently, only a few works performed a metrological
characterization of the new sensor. The work presented in [39] describes a set of experiments
focused on gait analysis aimed at comparing the performance of the new Kinect Azure
with the old Kinect v2 and a Vicon system. The authors of [40] performed a thorough
characterization of the Kinect Azure sensor compared with its predecessors, Kinect v1 [41]
and Kinect v2. They evaluated the three sensors testing their depth repeatability, noise-to-
reflectivity, warm-up time, depth precision, reflectivity sensitivity, lens aberration, indoor
versus outdoor performance, and flying pixel error. Finally, in [42], the authors explored
the depth errors of Kinect Azure in comparison with Kinect v2.

To our knowledge, there is no standard experimental procedure to determine the
typical error sources of this technology (namely the temperature influence and depth-
related errors). As a result, researchers often come up with their own procedure resulting
in non-comparable results and inconsistencies, spreading confusion among the scientific
community. For example, without a careful characterization of ToF devices (or a document
clearly stating their metrological properties), researchers may end up using the camera
of choice without considering the intrinsic errors this technology implies, errors that
can be corrected in post-processing if known and estimated beforehand. Working with
depth devices without this knowledge may lead researchers to reach wrong conclusions
in their own works, for example, when bias correction is not correctly estimated and
corrected or when temperature influence is not considered when designing experiments.
Another example is when ToF devices are adopted as monitoring systems in industrial
workspaces, leading to incorrect depth estimation that may result in harmful behavior of
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robotic systems and machines or in healthcare applications when patients’ body volume
is incorrectly estimated. The datasheet information is typically not enough in the case
of particular tasks; thus, a metrological characterization is always needed to ensure the
success of the application. Therefore, our first contribution is the proposed experimental
set-up and characterization procedure described in Sections 2–4.

Second, there is little to nonscientific literature that compares consumer-end ToF
cameras with industrial ones because the two have very specific application fields that
usually do not overlap. However, because of the Industry 4.0 paradigm, there are a
plethora of new applications and requirements that challenge both worlds, thus making
this comparison meaningful for both researchers and practitioners helping them choose
the suitable device for their task. Therefore, the investigation conducted compares the
performance and metrological characteristics of two industrial Basler ToF cameras with
the new Kinect Azure in a set of experiments based on our previous work conducted on
different ToF cameras [43].

Finally, considering the challenging task of human recognition and tracking in indus-
trial environments [44], the devices have also been tested in two 3D reconstruction set-ups
to evaluate the quality of their point clouds when used to reconstruct both geometrical
objects and human body segments. This is, in fact, one of the tricky yet more interesting
applications in which ToF cameras are typically involved as the metrological device to
measure the objects’ dimension and volume. To this aim, the experimental procedure
conducted to evaluate the correctness of both objects and human shapes dimensions is
detailed in Section 5. The results are compared with the reconstruction obtained with a
high-performing digitizer (gold standard).

2. Materials and Methods

ToF measurement is performed using a continuous-wave modulation based on the
phase-shifting principle [45]. A periodic wave is emitted from the device and, after hitting
an object, is sent back to the system. The resulting distance is calculated by analyzing the
time between the emission of the wave and the corresponding received signal.

2.1. Specifications of the Evaluated Sensors

The cameras analyzed in this work are (i) Microsoft Kinect Azure (consumer-end),
(ii) Basler Blaze 101 (industrial), and (iii) Basler ToF 640 (industrial). Table 1 details the
main technical characteristics of the three devices.

Table 1. Summary of cameras’ depth mode technical characteristics.

Kinect Azure NFOV Unb. Basler ToF 640 Basler Blaze 101

Resolution 640 × 576 px 640 × 480 px 640 × 480 px
Frame rate 30 fps 20 fps 30 fps

FoV 75 × 65 deg 57 × 43 deg 67 × 51 deg
Working range 0.5–3.86 m 0.5–5.8 m 0.5–5.5 m

Dimension 103 × 39 × 126 mm 141.9 × 76.4 × 61.5 mm 100 × 81 × 64 mm
Power 5.9 W 15 W 22 W
Weight 0.440 kg 0.400 kg 0.690 kg

It is worth noting that, compared to Kinect v2, Kinect Azure’s depth camera may be
used in two modalities, which may be binned or unbinned: NFOV (narrow field-of-view)
and WFOV (wide field-of-view). However, in the context of this work, only the NFOV
unbinned modality was used to perform the tests since the binning operation is applied by
the SDK. The depth sensor adopted by the camera is based on the one detailed in [46].

The Basler Blaze 101 ToF camera mounts a Sony DepthSense IMX556 sensor, which
makes the camera more robust to natural light. According to the datasheet, the optimal
operating range is 0.5–5.5 m, where a depth precision of ±5 mm is guaranteed.
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The Basler ToF 640 industrial camera is based on pulsed ToF technology adopting a
Panasonic CCD depth sensor. It is optimized to work in indoor environments due to the
technology’s sensitivity to natural light. The optimal operating range is 0.5–5.8 m, where a
depth precision of ±10 mm is guaranteed.

2.2. Evaluation of Error Sources and Performance

The error sources are subdivided into (i) systematic and non-systematic errors accord-
ing to their nature [47], (ii) camera-dependent errors, (iii) and scene-dependent errors [48].
However, in this study, depth errors related to fixed pattern noise and internal light scatter-
ing have not been evaluated.

The study detailed in [8] shows a metrological characterization based on the Guide
to the expression of Uncertainty Measurements [49] for the uncertainty analysis of 3D
scene reconstruction. Moreover, in [43], a metrological characterization comparing the
performance of Kinect v2 and Picoflexx was performed. As in [43], the error sources
considered are (i) temperature-related errors and (ii) depth-related errors.

Temperature-related errors are systematic and camera-related errors that are relevant
for ToF cameras because their technology is strongly affected by heat [3–5,9]. The internal
temperature of the camera is due to the heating of the illumination unit and image sensor,
which produces drifts in the depth measure. After reaching a stable temperature, the
components’ characteristics do not change anymore. Consequently, it is suggested by
the literature [48,50–52] to use ToF cameras after a warm-up time to obtain stable depth
readings. However, the warm-up time is different according to the device, and some may
compensate internally for this effect while others may not.

Except for the temperature-related errors, the other three error sources analyzed
in this study are all depth-related: (i) depth amplitude error, (ii) depth distortion, and
(iii) temporal error.

Depth amplitude is a systematic and camera-related error because the precision of
depth measurements depends on the amount of light observed on each pixel [47]. Both
underexposed and overexposed amplitudes may result in depth discrepancies since the
illumination intensity is the highest at the center of the image and grows weaker around
the borders. This effect leads to the overestimation of the depth values around the edges.
However, if the object is very close to the emitter, the observed intensity may be higher,
leading to pixel saturation.

Depth distortion is a systematic and camera-related error that occurs when the emitted
light (typically a sinusoidal signal) is not generated correctly due to irregularities in the
modulation process. Therefore, an offset is produced that only depends on the measured
depth observed at each pixel. This error is assessed by comparing the depth measurements
from devices with a reference ground truth distance [47,48].

Temporal errors are non-systematic camera-related errors that represent the depth
variation of a pixel over time caused by measurement noise, which is more evident when
the scene illumination is non-uniform, or the observed surface has low reflectivity [48].
This error also depends on the depth uniformity of the scene and on the integration time.

The overall measurement uncertainty was evaluated following the methodology
presented in [8]. In addition, two other tests were performed to evaluate the performance
of the sensors when used for (i) 3D reconstruction and (ii) body kinematic measurements.
In the first experiment, the capability of the devices to reliably reconstruct and measure
body segments is determined, while the second is aimed at evaluating the performance in
human body segmentation.

2.3. Measuring Set-Up

Figure 1 shows a scheme of the setup. The three cameras were tested indoors at an
environment temperature of 24 ◦C. An opaque white sheet of paper was used as the target
for the acquisitions, mounted on a planar panel with verified planarity of 0.1 mm around
the center area of 400 × 400 mm. Each camera was mounted at a fixed height of 1.5 m
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from the ground, and they were oriented perpendicularly with respect to the target using a
tripod with integrated bubble levels. A laser rangefinder EXTECH DT40M with an accuracy
of ±2 mm was used to verify the nominal position Dn of the camera with respect to the
target according to the experiment. The overall illumination of the scene was kept constant
without the influence of natural light.
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3. Evaluation of Temperature-Related Errors

Referring to the set-up in Figure 1, in this experiment, the cameras were positioned
one at a time at a constant nominal distance of Dn = 2 m, corresponding to half of their
operating range. They were kept in the test area while turned off for at least 4 h before
starting the experiments.

The experiment lasted 2 h for each camera. The images were acquired every 10 s at
30 fps. Frames belonging to a time window of 5 min were grouped together, resulting in
groups of 30 frames. For each, a region of interest of 15 × 15 px centered around the central
pixel of the image was extracted. Finally, for each group the mean depth value µt and the
standard deviation σt was computed, resulting in 24 data points dt.

Depth measurements performed by ToF cameras are typically affected by a systematic
error (bias). Thus, the measured depth must be corrected by this quantity to obtain correct
readings. Bias estimation, in this case, was conducted using the following formula:

µt =
1
5

24
∑

i=19
dt

b = µt − Dn
d∗t = dt − b

(1)

We chose to calculate µt as the mean of the last five data points dt because they are the
most stable. Otherwise, the bias correction would have taken in consideration the great
difference between the actual distance Dn and the measured distance Dm that is observed
in the first data points before the warm-up kicks in (see Figure 2). Hence, the last five dt
correspond to the time intervals after the warm-up time of the cameras. The mean depth
values after bias correction d∗t are represented in Figure 2.
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Surprisingly, Kinect Azure does not need to warm up to obtain a stable output,
meaning that the depth readings are not correlated with the device temperature. This
result contrasts with the work presented in [40], where the authors stated that the device
needed at least 60 min of warm-up. However, in our experiment, Kinect Azure achieves
stable values from the beginning without the need for a warm-up time. In fact, the bias
correction for Kinect Azure could have been performed considering all the 24 data points
dt in Equation (1) instead of the last five only since they were not significantly different.
The experiment was performed twice to confirm this finding, highlighting the robustness
of our measuring method in contrast with reference [40]. A possible reason to explain
why we obtained a significantly different result is that the bias was not corrected in [40].
Furthermore, in our experiment, the relative distance camera-target was Dn = 2 m, while
in [40], they used Dn = 0.8 m. Environmental characteristics could have impacted the
measurement, for example, if the ambient illuminance interfered with Azure’s IR rays. In
our case, even if the camera is used continuously for almost 120 min, the output is stable
in terms of deviation from the actual distance, revealing a small wiggling behavior that
leads to outputs that differ from the nominal distance of about −15 mm (around 1 mm
after bias correction). Moreover, according to the experimental comparison in [7], the same
behavior could be observed for Kinect v1, while the Kinect v2 mean depth data show a
strong correlation with the device temperature (stable readings after 25 min). On the other
hand, both the Basler Blaze 101 and the Basler ToF 640 cameras need a warm-up time of at
least 50 min. It is worth noting that the deviation (shown as error bars) decreases with time
for both Basler Blaze 101 and Basler ToF 640, but this could not be said for Kinect Azure,
which shows stable deviation values uncorrelated with the device temperature. The reason
for this different behavior could be that industrial cameras’ design considers the hazardous
environment in which they could be deployed; hence, manufacturers may not account for
temperature-related errors internally due to lack of space or design limitations.

4. Evaluation of Depth-Related Errors

Referring to the setup in Figure 1, in this set of experiments, the three cameras were
placed at 15 nominal positions Dn in the range of 1.7–4.5 m from the planar target, with a
step of 0.2 m. For each nominal position, a total of 30 frames were recorded at 30 fps.

4.1. Depth Amplitude Errors Evaluation

To evaluate the depth amplitude of each sensor, it is necessary to analyze both the
quality of the captured IR image and the corresponding depth map. In fact, depth accuracy
is related to the amount of light received by each pixel because both under and over-exposed
pixels result in depth errors.
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On the one hand, IR images contain the light intensity of the reflected ray emitted
from the ToF camera. Observing the images on the left in Figure 3, it is evident that the
intensity of the captured light decreases around the corners of the images while it is at
its maximum in the center. In the case of Kinect Azure, the dark circles appearing in the
image are due to the visualization of the image but are not an error source, while the black
patches on the corners of the image are due to the reduced field of view that happens in
the NFOW modality and are absent in WFOV. In the context of this work, only the NFOV
was evaluated since its characteristics are similar to those of the other cameras. In contrast,
for the Basler Blaze 101 and the Basler ToF 640 cameras, the resulting intensity image is
lighter and more uniform. Considering that the images in Figure 3 refer to a Dn = 1.7 m,
the differences in the pictures are due to (i) the optics mounted on the cameras, (ii) the
different field of view, and (iii) the positioning of the tripod along the x-axis with respect
to the target; hence, the scene is captured differently. This is also the reason why only a
portion of the frame around the central pixel was considered for computing our analysis of
the depth frames.

On the other hand, depth images contain the measured depth value corresponding to
each pixel. In this work, they were obtained by analyzing the point cloud because resolution
and data accuracy are higher, especially for the two industrial cameras. The resulting depth
amplitude error is estimated from these depth images. Considering the experimental
set-up described in Section 4, to each nominal camera position Dn corresponds to a total of
m = 30 measured depth maps Dm. Hence, to each Dn corresponds an average depth map
µm computed by:

µm =
1
m

m

∑
i=1

Di (2)

The resulting data must be centered around zero, so for each Dm we first compute:

εm = µm − Dn (3)

Then, we calculate the average εm as:

εm =
1
m

m

∑
i=1

εm (4)

Finally, for each nominal distance Dn we obtain the error map (centered around zero)
by removing the mean:

εn = εm − εm (5)

The images on the right in Figure 3 represent the depth amplitude error calculated
following the abovementioned procedure. In the case of Kinect Azure, the depth amplitude
error at Dn = 1.7 m is mostly concentrated around ±5 mm. On the upper corners, we
can observe peaks of −17 to +19 mm due to reflections occurring on the surface. Basler
Blaze depth is denser thanks to an increased point cloud resolution; however, more than
half of the image shows an overestimation of +5 to +13 mm, probably due to the higher
amount of reflected light in this area. It is also possible to observe concentric waves due
to the non-ideal wave generated by the camera’s emitter, which may be another error
source causing this overestimation. The peak of −31 mm refers to a non-planar edge of the
target. Finally, the depth amplitude error map of Basler ToF 640 shows that most pixels
are underestimated by −5 to −19 mm, especially in the center area, while the angles of the
target are overestimated by +20 to +32 mm. It is worth noting that even if the camera-target
alignment was ensured before the acquisition, displacements might have occurred without
us noticing. This is the reason why for the analysis described in the following Sections,
we only consider a sub-portion of the depth map. Furthermore, we checked the depth
amplitude error in a region of interest of 40 × 40 mm centered around the central pixel of
the depth map. In this area, Kinect Azure’s error ranges from 2 to 5 mm, Basler Blaze 101′s



Sensors 2023, 23, 538 8 of 22

ranges from 3 to 7 mm, and Basler ToF 640′s ranges from −10 to −6 mm. This region has
been chosen to obtain comparable results with respect to the cameras’ datasheets.
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Figure 3. IR and Depth amplitude images of the target at Dn = 1.7 m acquired with (a) Kinect Azure,
(b) Basler Blaze 101, (c) Basler ToF 640. The central region of interest is shown in red.
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4.2. Depth Distortion Evaluation

Depth distortion errors typically increase with distance. Therefore, it is important to
evaluate the relative trend of depth values according to the nominal positions Dn instead
of the absolute values. Considering the experimental set-up described in Section 4 and the
mathematical procedure detailed in Section 4.1 to compute εn, in this case each nominal
camera position Dn corresponds to a total of m = 30 measured depth values Dm calculated
considering only the central pixel of each frame [43].

Figure 4 shows the resulting depth distortion error εn of the three cameras for each
nominal position. For Kinect Azure and Basler Blaze 101, the error is very low, showing a
wiggling trend that is more prominent in the case of Azure Kinect. The depth distortion of
Kinect Azure spans from −18 mm to 10 mm, which corresponds to the nominal distances
of 2.7 m and 3.3 m, respectively. In the case of Basler Blaze 101, it has an almost constant
behavior and spans from −11 mm to 9 mm, corresponding to the nominal distances of
1.7 m and 4.5 m, respectively. However, for Basler ToF 640, the distortion error is evident
since the trend increases with distance. It ranges from −48 mm to 76 mm, corresponding to
nominal distances of 1.7 m and 4.5 m.
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Figure 4. Plot showing the depth distortion error εncomputed for each camera for each Dn.

4.3. Temporal Errors Evaluation

Temporal errors refer to fluctuations of the depth values due to measurement noise.
Hence, considering the experiment described in Section 4.1, the temporal error is the
standard deviation σm over 30 frames for each measured position Dm:

σm =

√
1
m

m

∑
i=1

(Di − µm)
2 (6)

The mean depth value µm appearing in this formula is obtained from Equation (2).
The deviation values are shown in Figure 5 according to the µm values. For all the

cameras, the standard deviation σm has an increasing trend. The results for both the Kinect
Azure and Basler Blaze 101 cameras are similar. On the other hand, the standard deviation
of the Basler ToF 640 camera is sometimes very high (σm = 3.75 mm for µm = 3429 mm) or
very low (σm = 0.61 mm for µm = 1786 mm). The values of σm are slightly higher for the
Kinect Azure, which has values in a range of 0.81 mm and 3.19 mm versus the σm computed
for the Basler Blaze 101, which is in a range of 0.52 mm and 2.99 mm. Moreover, the trend
lines (represented by the black dashed lines) are obtained as a linear regression over values
σm. The regression coefficients R2 are equal to 90% (slope 2.67, intercept 1.01 mm), 91%
(slope 2.59, intercept 1.62 mm), and 48% (slope 2.64, intercept 0.52 mm) for the Kinect
Azure, Basler Blaze 101, and Basler ToF 640, respectively. This shows that the performance
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of the Kinect Azure and the Basler Blaze 101 are equivalent, while highlighting that the
Basler ToF 640 has higher variability compared to the other two cameras.
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It is worth noting that Kinect Azure’s results adhere to those obtained in [42], which
show equivalent standard deviation values that increase with distance.

4.4. Overall Depth Measurement Uncertainty Evaluation

To obtain the overall measurement uncertainty, a neighborhood of 20 × 20 px centered
around the central pixel of the frame was extracted, and each depth value belonging to this
squared region was considered, resulting in 400 data points per frame. The neighborhood
is shown in red in Figure 3.
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For each Dn, 30 frames were taken in the range of 1.7–4.5 m with a step of 0.2 m
corresponding to 15 positions. The collected measurements are shown in Figure 6 for the
three cameras and correspond to a total of around 168,000 data points (except the outliers,
which were removed from the calculations). The results show that the Kinect Azure has
very little dispersion since the measured depth values corresponding to the squared blue
markers (Figure 6a) have small variation. However, there are few occurrences of incorrect
readings observed only for nominal distances greater than 4.1 m due to some reflections
occurring in the scene. This resulted in a mean deviation σ0 equal to 13 mm, which is
slightly lower than the value obtained for the Kinect v2 sensor resulting from the same
experiment carried out in [43], which reported a σ0 value equal to 18 mm. The dispersion
observed in the case of the Basler Blaze 101 camera is even better, as shown by the reduced
variability of the green diamond markers (Figure 6b). The sensor seems less prone to
dispersion effects, and its σ0 is equal to 6 mm. Nonetheless, a high number of incorrect
readings appear for nominal distances greater than 3.1 m. Compared to Kinect Azure, this
effect seems more generally distributed since the incorrect measures span a wider range (Dn
in a range of 3.1–4.5 m corresponding to a Dm range of 0–0.8 m) than in the case of Kinect
Azure (Dn in a range of 4.1–4.5 m corresponding to a Dm range of 0.8–1.6 m). In contrast,
the Basler ToF 640 camera has higher dispersion (bottom image in Figure 6c) but it does not
achieve incorrect depth values, resulting in a σ0 of 13 mm, which is the lowest of the three.
Moreover, the linear regression computed for the three devices and represented by the
black dashed line in each plot highlights their measurement linearity. The corresponding
R2 coefficients are 99.98%, 100%, and 99.98% for the Kinect Azure, Basler Blaze 101, and
Basler ToF 640 cameras, respectively. It is worth noting that the outliers observed were
removed before performing the analysis.
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5. Application Example: 3D Reconstruction

ToF devices are typically used indoors to perform a plethora of measurement tasks,
for example, the relative distance monitoring between human subjects and moving ma-
chines [23] and object volume and size estimation [53]. Depth cameras are also extremely
important for the healthcare sector since human body reconstruction and volume estima-
tion are crucial for the gait analysis of patients with reduced mobility [35] and for the
evaluation of particular diseases involving malformations of the body [54].

A careful metrological characterization of the ToF camera of choice following the
procedure described in Sections 2–4 is needed to determine the error sources and to
design the application set-up in order to obtain correct data. However, in the case of
3D reconstruction, the assessment of error sources may not be enough to determine which
device is best suited for the task. Therefore, in this Section, we propose two experimental
set-ups in which the three cameras of our choice (Kinect Azure, Basler Blaze 101, and Basler
ToF 640) are compared in terms of 3D reconstruction capabilities.

5.1. Object Reconstruction

This experiment aims to evaluate the sensors’ capabilities to accurately reconstruct
objects from the acquired point cloud. The cylindrical object used in [55] with an external
radius of 122 mm was used as the measurement target. The cylinder was industrially pro-
duced, and its radius was measured with a caliber with a 0.01 mm resolution. Considering
the field-of-view (FoV) and range of the cameras, the cylinder was placed at 15 positions
spanning the FoV symmetrically. However, since the reconstruction performance may vary
according to the positioning of the target with respect to the camera in the vertical direction,
two set-ups were considered where the bottom end of the cylinder is placed (i) at 0.7 m
from the floor (odd stations numbers), and (ii) at 1.5 m (even stations numbers) with the
aid of an adjustable carrier. This results in the set-up shown in Figure 7, where the red dots
represent odd stations, and the green dots represent even stations. Stations 19, 23, 25, and
29 were moved to allow the cylinder to fit inside the camera FoV (black dashed lines). It
is worth noting that in this experiment, the aim was not to evaluate the multipath effect;
hence, the cylinder was not positioned at floor height.
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A total of 30 frames at 30 fps for each station were acquired for each camera. By
inspecting the data, it resulted that only the point clouds acquired by Kinect Azure were
of enough quality for further analysis because the point clouds of the other two cameras
were too noisy to allow a proper reconstruction of the object. For the Basler ToF 640 camera,
the point cloud is affected by mixed pixel errors and multipath making it impossible to
properly detect the target. In the case of the Basler Blaze 101 camera, the object is sometimes
reconstructed at different depth values than the carrier, leading to incorrect readings. This
is probably due to the target shape since industrial cameras are usually optimized to work
with planar surfaces. Therefore, the following analysis was conducted only on Kinect
Azure data:

1. Each point cloud was manually inspected to remove the elements of the scene not
belonging to the cylinder. This was performed by applying a depth filter to cut off
data outside the area of interest, thus obtaining only the point cloud of the cylinder.

2. The camera performance was evaluated by comparing the external radius of the
measured cylinder with respect to the nominal one of 122 mm. The measured external
radius was estimated individually for each acquisition by analyzing the point cloud
with MATLAB using a cylindrical fit provided by the software.

3. For each station, the mean value over 30 frames of the external radius and the corre-
sponding standard deviation was computed.

Figure 8 shows the measured external radius for the odd and even positions, respec-
tively. The diameter of the colored circle represents the mean value µd of the measured
diameter plus the standard deviation value σd (upper bound, UB). The diameter of the
white hole represents the mean value µd minus the standard deviation value σd (lower
bound, LB). If this subtraction results in values less than zero, no hole is drawn.

UB = µd + σd
LB = µd − σd

(7)
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The resulting mean values of the external radius span from 140 mm to 100 mm;
however, the standard deviation is very high for stations 1, 2, 6, and 19, and it is above
average for stations 7, 9, 11, 11, 20, and 30. Considering the camera operative range in
NFOV unbinned mode, it is evident that the best performance is achieved when the cylinder
is positioned at 1.5 m from the floor (even stations). Moreover, for stations positioned at
depth values higher than 3.5 m, the standard deviation of the measure is higher, especially
for stations closer to the edges of the FoV (1, 2, and 6, which have values of 432, 218, and
115 mm, respectively). It is unclear why, at positions 19, 20, and 30, the standard deviation
is higher with respect to the other values achieved for stations inside the range of 1.5–3.0 m
(values above 100 mm versus an average standard deviation of 50 mm). The reason may be
that these are near the FoV edges. In conclusion, this experiment shows that Kinect Azure
performance in 3D reconstruction is better at the center of its FoV, corresponding to the
central area of the set-up.

5.2. Human Body Reconstruction

This experiment has been designed to evaluate the human body reconstruction capa-
bilities according to the procedure described in [42]. A 70 × 30 cm mannequin representing
the human upper body with movable arms was adopted for the test. Angles between
its body segments were measured and compared with a reference measure taken by a
commercial 3D digitizer Konica Minolta VIVID-920 with a resolution of 640 × 480 px and
depth accuracy of ±0.40 mm. This device was chosen as the gold standard because its
accuracy is one degree higher than the average measured depth values obtained from
Kinect Azure.

Seven body segments can be extracted from the mannequin: (i) head and trunk, (ii) left
forearm, (iii) right forearm, (iv) left arm, (v) right arm, (vi) left hand, (vii) and right hand.
According to [43] and by considering the mannequin adopted to evaluate the human body
kinematics, six absolute angles of interest should be considered:

• αL: angle between the vertical axis and the left forearm.

• αR: angle between the vertical axis and the right forearm.

• βL: angle between the left forearm and the left arm.

• βR: angle between the right forearm and the right arm.
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• γL: angle between the left arm and the left hand.

• γR: angle between the right arm and the right hand.

The cameras were placed about 2 m from the mannequin, according to their FoV. The
mannequin was moved in seven different poses, as shown in Figure 9, simulating a variety
of human postures. For each configuration, a single point cloud was acquired. Points be-
longing to the mannequin were extracted using PolyWorks from each point cloud. Then, for
each body segment, the Principal Component Analysis (PCA) was performed to compute
the direction of their principal components considering the body axial symmetry [53,56].
Finally, the angles of interest were obtained by performing the scalar product between the
principal components accordingly.
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Figure 9. Dummy poses considered for the analysis as in [43].

In addition to the reference values obtained from the Konica Minolta, the results were
compared with the values obtained by Kinect v2. Figure 10 shows the resulting values of
the angles of interest for each mannequin configuration. From these bar plots, it is evident
that Basler ToF 640 (red bar) and Kinect v2 (orange bar) are the ones that achieve the worst
performance. In contrast, Basler Blaze 101 (green bar) and Azure Kinect (blue bar) show
a very similar trend with Konica Minolta (purple bar, golden standard). Excluding the
performance of Kinect v2, the easiest poses to measure are poses 4 and 5, while for poses 1,
2, and 3, the three cameras show values that are sometimes very different from each other.
This depends on the pose itself: poses 1, 2, and 3 span along the z-axis more than the other,
resulting in higher occlusions.

To better analyze the results, the differences between the resulting values and the
corresponding angle measured by the Konica Minolta are shown in bar plots in Figure 11.
For most configurations, the Kinect v2 measurements are noticeably different from the
reference ones acquired with Konica Minolta, sometimes reaching values of more than
−30 deg (measured angle higher than reference) and more than 50 deg (measured angle
lower than reference). The βL angle measured by Basler ToF 640 is the most different from
the reference for all configurations, achieving errors ranging from more than −20 deg up
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to more than 30 deg. In comparison, Basler Blaze 101 performs better, achieving errors
of −10 deg up to 25 deg. Azure Kinect measurements are typically the same as those
computed from Konica Minolta, with errors ranging from −10 deg up to 12 deg, mostly
occurring in correspondence of angles γL and γR. These two angles consider the arm and
the hand segments, which are difficult to measure accurately since the point clouds are
less dense. These tests showed that Kinect Azure’s performance in reconstructing human
bodies is notably improved compared to Kinect v2, resulting in lower errors. It is worth
noting that this analysis has been performed without the aid of the Kinect Azure SDK,
which computes the human skeleton using a skeletonization algorithm. Instead, the body
segments have been extracted from the point clouds by using PolyWorks and approximated
as the principal component vector resulting from the PCA analysis. As a result, each body
segment was considered as a vector facilitating the estimation of angles between them.
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6. Conclusions

This paper details an experimental procedure to assess the metrological characteristics
of ToF cameras with respect to the typical error sources of this technology. This contribution
is especially important to robustly compare results among devices. The procedure was
conducted on a consumer-end device (Kinect Azure) and two industrial ones (Basler Blaze
101 and Basler ToF 640). Although comparing cameras belonging to different worlds
may seem counter-intuitive, this choice is motivated by the necessity of new solutions for
modern industry, which is moving towards innovative environments where both humans
and machine collaborate.

Error sources such as temperature influence on depth measurement, depth distortion,
depth amplitude errors, temporal errors, and overall depth measurement uncertainty were
evaluated for the three devices in different experiments. A summary of the developed
evaluation procedure can be found in Table 2 for quick reference. The results of each
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camera are summarized in Table 3 in comparison with the corresponding datasheet and
relevant references.

Table 2. Summary of the proposed ToF camera evaluation protocol.

Warm-Up Time Depth Amplitude Depth Distortion Temporal Error Overall
Uncertainty

Env. conditions Ensure optimal temperature (i.e., 24 ◦C)
Ensure constant illumination without natural light interference

Reference target Opaque target with verified planarity especially in the central region

Hardware set-up

Camera mounted on support at fixed height
Ensure camera perpendicularity with respect to the target

Fixed distance Dn
Turn off camera

before experiment
for at least 4 h

Define a set of distances Dn in the optimal working range according to the
camera datasheet

Data acquisition
1 depth frame or
point cloud every

10 s at 30 fps
30 depth frames or point cloud at each Dn at 30 fps

Data analysis

Group frames
belonging to 5 min

time windows
(30 frames total)

Extract 15 × 15 ROI
around the

central pixel
Compute mean

depth µt and
standard deviation

σt (Equation (1))

Extract target ∀
frame ∈ to each Dn
Compute error εn
(Equations (2)–(5))

Extract only the
depth value of the

central pixel ∀
frame ∈ to each Dn
Compute error εn
(Equations (2)–(5))

Extract only the
depth value of the

central pixel ∀
frame ∈ to each

Dn Compute
deviation σm
(Equation (6))

Compute linear
regression and

check R2

Extract 20 × 20
ROI around the

central pixel
Use all data points

inside ROI
Compute linear
regression and

check R2

Data correction

Apply bias
correction and

obtain d∗t
(Equation (1))

Ensure that εn is the relative error not the
absolute depth //

Remove outliers
before applying
linear regression

How to
visualize

X-axis: time [s]
Y-axis: d∗t with

corresponding σt
[mm]

Optional: secondary
y-axis showing

relative error [%]

IR image and
Depth error

X-axis: x
coordinate [px]

and [mm],
respectively

Y-axis: y
coordinate [px]

and [mm],
respectively

Show color bar

X-axis: distance
Dn [mm]

Y-axis: εn [mm]

X-axis: µm [mm]
Y-axis: σm [mm]

Show linear
regression line

X-axis: Dn [mm]
Y-axis: Dm [mm]

Show linear
regression line

The presence of flying pixel problems and multipath errors was observed in the point
cloud acquisitions; however, they were not quantified in this study. From these results,
we may conclude that the best and worst performing cameras among the three are Kinect
Azure and Basler ToF 640, respectively, while Basler Blaze 101 achieves comparable results
with respect to Kinect Azure.

Since the metrological characterization of error sources may not be enough to de-
termine the right device for a target application, we proposed an example in which the
cameras are used for 3D reconstruction. The first experiment involved a cylindrical object,
and the aim was to correctly estimate its diameter from the point cloud at different heights
and distances from the cameras. However, from this test, the point clouds of the two
industrial cameras resulted in being too noisy to be acceptable for evaluation. This was
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probably because they are best suited for objects with regular shapes placed at shorter
distances from the light emitter. It is worth mentioning that from the error source character-
ization alone, it was not possible to predict such inconsistent behavior, thus highlighting
the need for a standard experimental procedure for the assessment of ToF cameras’ 3D
reconstruction capabilities.

Table 3. Summary of the error sources influence resulting from our experiments in comparison with
relevant references and cameras’ datasheets. Asterisks refer to data obtained by our procedure. DS
refers to data found in the device’s datasheet.

Warm-Up Time Depth Amplitude Depth Distortion Temporal Error Overall
Uncertainty

Kinect Azure * Not needed 2 to 5 mm −18 to 10 mm 0.8 to 3.2 mm 13 mm

Kinect Azure DS Not provided Not provided <11 mm + 0.1% Dn ≤17 mm Not provided

Kinect Azure [1] 50 min Not provided −7 to 0 mm 0.5 to 2 mm Not provided

Kinect Azure [2] Not provided −2 to 0 mm 1.1 to 12.7 mm 0.6 to 3.7 mm Not provided

Basler Blaze 101 * 50 min 3 to 7 mm −11 to 9 mm 0.5 to 3 mm 6 mm

Basler Blaze 101 DS 20 min −5 to 5 mm Not provided <2 mm Not provided

Basler ToF 640 * 50 min −10 to −6 mm −48 to 76 mm 0.6 to 3.8 mm 13 mm

Basler ToF 640 DS 20 min −10 to 10 mm Not provided ≤8 mm Not provided

The second experiment was aimed at estimating the capability of the cameras to
reconstruct human bodies. This is especially useful for healthcare applications and for
human activity monitoring and safety in industrial workspaces. The target object was a
mannequin representing the human upper body with movable arms to simulate a variety of
human poses. The reconstruction results of each camera were compared with Kinect v2 and
with an industrial digitizer Konica Minolta (gold standard). In conclusion, the performance
of Kinect Azure and Basler Blaze 101 are usually comparable with the reference except for
some tricky poses where occlusions interfere with the measurement. The difference between
the two is probably due to the typical application for which the cameras are developed.
Industrial cameras perform best with smaller objects and have higher point cloud density to
better reconstruct surface defects in controlled environments, while consumer-end cameras
are typically used in unstructured environments with a variety of ambient conditions to
reconstruct bigger objects and bodies.

As a further development, we aim to expand the characterization procedure by adding
tests on different surfaces in terms of both materials’ opacity and color. Moreover, the 3D
reconstruction experimental procedure proved to be necessary as well to define which
camera is best suited for the task; hence, we aim to rigorously standardize it as well in
the future by also taking into consideration objects of different shapes and materials, a
full-body mannequin, and human subjects. In this way, researchers and practitioners may
conduct a thorough metrological investigation of their sensor of choice.
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