6 research outputs found

    Sequence context and crosslinking mechanism affect the efficiency of in vivo capture of a protein–protein interaction

    Full text link
    Protein–protein interactions (PPIs) are essential for implementing cellular processes and thus methods for the discovery and study of PPIs are highly desirable. An emerging method for capturing PPIs in their native cellular environment is in vivo covalent chemical capture, a method that uses nonsense suppression to site specifically incorporate photoactivable unnatural amino acids (UAAs) in living cells. However, in one study we found that this method did not capture a PPI for which there was abundant functional evidence, a complex formed between the transcriptional activator Gal4 and its repressor protein Gal80. Here we describe the factors that influence the success of covalent chemical capture and show that the innate reactivity of the two UAAs utilized, ( p‐ benzoylphenylalanine (pBpa) and p ‐azidophenylalanine (pAzpa)), plays a profound role in the capture of Gal80 by Gal4. Based upon these data, guidelines are outlined for the successful use of in vivo photo‐crosslinking to capture novel PPIs and to characterize the interfaces. © 2013 Wiley Periodicals, Inc. Biopolymers 101: 391–397, 2014.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102672/1/bip22395.pd

    Discovery of Enzymatic Targets of Transcriptional Activators via <i>in Vivo</i> Covalent Chemical Capture

    No full text
    The network of activator protein-protein interactions (PPIs) that underpin transcription initiation is poorly defined, particularly in the cellular context. The transient nature of these contacts and the often low abundance of the participants present significant experimental hurdles. Through the coupling of <i>in vivo</i> covalent chemical capture and shotgun LC-MS/MS (MuDPIT) analysis, we can trap the PPIs of transcriptional activators in a cellular setting and identify the binding partners in an unbiased fashion. Using this approach, we discover that the prototypical activators Gal4 and VP16 target the Snf1 (AMPK) kinase complex via direct interactions with both the core enzymatic subunit Snf1 and the exchangeable subunit Gal83. Further, we use a tandem reversible formaldehyde and irreversible covalent chemical capture approach (TRIC) to capture the Gal4-Snf1 interaction at the Gal1 promoter in live yeast. Together, these data support a critical role for activator PPIs in both the recruitment and positioning of important enzymatic complexes at a gene promoter and represent a technical advancement in the discovery of new cellular binding targets of transcriptional activators
    corecore