832 research outputs found

    Impact of Growth Habit and Architecture Genes on Adaptation and Performance of Bread Wheat

    Get PDF
    In bread wheat (Triticum aestivum L.), flowering time and plant stature are important phenological and agronomic traits for adaptation, yield potential, and yield stability. Timely flowering is critical for production, and the flowering window has to be late enough to avoid early season frosts but early enough to avoid late season stresses such as heat and terminal drought. Flowering time is controlled mainly by vernalization, photoperiod response, and earliness per se genes, which can be exploited to fine‐tune growth and tailor flowering time for the production of desirable wheat cultivars. Tailoring flowering time could help reduce preharvest sprouting problems by escaping high temperatures and late season rainfall, which promote preharvest sprouting, hence yield loss. Concisely summarizing available information on flowering time and identifying research gaps could provide direction for future research. This chapter, therefore, discusses: (i) the progress made in discovering genes involved and the impact of their extensive allelic variation on flowering time, (ii) the potential benefits of tailoring wheat\u27s flowering time to improve yield, and (iii) the benefits of introgressing genes for other complimentary traits, such as semidwarf and preharvest sprouting resistance on advanced lines to achieve higher yield, thus, sustainable food security

    Métacognition : intervention thérapeutique autour de la conscience des troubles chez des patients souffrant de traumatisme crânio-cérébral grave

    Get PDF
    Unawareness related to brain injury has implications for participation in rehabilitation, functional outcomes, and the emotional well being of patients after an acquired brain injury. However, the development of interventions for improving self-awareness is at an early stage, and research on the effectiveness of interventions is limited. The present paper is an investigation into the efficacy of a metacognitive program on self-awareness in people who have had an acquired brain injury. An experimental group of three patients were included in a “cross-over design” protocol including data from neuropsychological evaluations, cognitive complaints, behavioral and emotional changes. In comparison, a social intervention (communicative abilities, social interaction) was proposed to four other patients in order to estimate the specific effects of the metacognitive program. While no specific effect of the metacognitive program was highlighted on cognitive impairments, a post-intervention assessment indicated that participants had significantly improved behavioral limitations, suggesting a benefit of the metacognitive and social rehabilitations on behavior skills. Because benefits are similar whatever the program, it seems that social functioning implication in rehabilitation process needs to be taken into account in forthcoming interventions

    Development and application of an algorithm for detecting <i>Phaeocystis globosa</i> blooms in the Case 2 Southern North Sea waters

    Get PDF
    While mapping algal blooms from space is now well-established, mapping undesirable algal blooms in eutrophicated coastal waters raises further challenge in detecting individual phytoplankton species. In this paper, an algorithm is developed and tested for detecting Phaeocystis globosa blooms in the Southern North Sea. For this purpose, we first measured the light absorption properties of two phytoplankton groups, P. globosa and diatoms, in laboratory-controlled experiments. The main spectral difference between both groups was observed at 467 nm due to the absorption of the pigment chlorophyll c3 only present in P. globosa, suggesting that the absorption at 467 nm can be used to detect this alga in the field. A Phaeocystis-detection algorithm is proposed to retrieve chlorophyll c3 using either total absorption or water-leaving reflectance field data. Application of this algorithm to absorption and reflectance data from Phaeocystis-dominated natural communities shows positive results. Comparison with pigment concentrations and cell counts suggests that the algorithm can flag the presence of P. globosa and provide quantitative information above a chlorophyll c3 threshold of 0.3 mg m-3 equivalent to a P. globosa cell density of 3 × 106 cells L-1. Finally, the possibility of extrapolating this information to remote sensing reflectance data in these turbid waters is evaluated
    corecore