16 research outputs found

    Intravascular optical coherence tomography imaging at 3200 frames per second

    No full text
    We demonstrate intravascular optical coherence tomography (OCT) imaging with frame rate up to 3.2 kHz (192,000 rpm scanning). This was achieved by using a custom-built catheter in which the circumferential scanning was actuated by a 1.0 mm diameter synchronous motor. The OCT system, with an imaging depth of 3.7 mm (in air), is based on a Fourier domain mode locked laser operating at an A-line rate of 1.6 MHz. The diameter of the catheter is 1.1 mm at the tip. Ex vivo images of human coronary artery (78.4 mm length) were acquired at a pullback speed of 100 mm/s. True 3D volumetric imaging of the entire artery, with dense and isotropic sampling in all dimensions, was performed in < 1 second acquisition time. (C) 2013 Optical Society of Americ

    Ultrahigh-speed intravascular optical coherence tomography imaging at 3200 frames per second

    No full text
    We demonstrated intravascular OCT imaging with frame rate up to 3.2 kHz (192,000 rpm scanning). This was achieved by using a custom-built catheter in which the circumferential scanning was actuated by a 1.0 mm diameter synchronous motor. The OCT system was based on a Fourier Domain Mode Locked laser operating at an A-line rate of 1.6 MHz. The diameter of the catheter was 1.1 mm at the tip. Ex vivo images of human coronary artery (~78.4 mm length) were acquired at a pullback speed of 100 mm/s. True 3D volumetric imaging of the entire artery, with adequate sampling in all dimensions, was performed in &lt; 1 second acquisition time.</p

    Heartbeat OCT:Superfast imaging and elasticity detection

    No full text
    Intravascular Optical Coherence Tomography (IV-OCT) has generated a wealth of data that has deepened our understanding of coronary artery disease and catheter-based interventions on the vasculature. A number of issues, however – cardiac motion artifacts, undersampling and non-uniform rotational distortion (NURD) chiefly among them – affect the quality and interpretability of IV-OCT images

    Heartbeat OCT: in vivo intravascular megahertz-optical coherence tomography

    No full text
    Cardiac motion artifacts, non-uniform rotational distortion and undersampling affect the image quality and the diagnostic impact of intravascular optical coherence tomography (IV-OCT). In this study we demonstrate how these limitations of IV-OCT can be addressed by using an imaging system that we called "Heartbeat OCT", combining a fast Fourier Domain Mode Locked laser, fast pullback, and a micromotor actuated catheter, designed to examine a coronary vessel in less than one cardiac cycle. We acquired in vivo data sets of two coronary arteries in a porcine heart with both Heartbeat OCT, working at 2.88 MHz A-line rate, 4000 frames/s and 100 mm/s pullback speed, and with a commercial system. The in vivo results show that Heartbeat OCT provides faithfully rendered, motion-artifact free, fully sampled vessel wall architecture, unlike the conventional IV-OCT data. We present the Heartbeat OCT system in full technical detail and discuss the steps needed for clinical translation of the technology. (C) 2015 Optical Society of Americ
    corecore