24 research outputs found

    Click beetle luciferase mutant and near infrared naphthyl-luciferins for improved bioluminescence imaging

    Get PDF
    The sensitivity of bioluminescence imaging in animals is primarily dependent on the amount of photons emitted by the luciferase enzyme at wavelengths greater than 620 nm where tissue penetration is high. This area of work has been dominated by firefly luciferase and its substrate, D-luciferin, due to the system's peak emission (~ 600 nm), high signal to noise ratio, and generally favorable biodistribution of D-luciferin in mice. Here we report on the development of a codon optimized mutant of click beetle red luciferase that produces substantially more light output than firefly luciferase when the two enzymes are compared in transplanted cells within the skin of black fur mice or in deep brain. The mutant enzyme utilizes two new naphthyl-luciferin substrates to produce near infrared emission (730 nm and 743 nm). The stable luminescence signal and near infrared emission enable unprecedented sensitivity and accuracy for performing deep tissue multispectral tomography in mice

    Red-shifted click beetle luciferase mutant expands the multicolor bioluminescent palette for deep tissue imaging

    Get PDF
    For in vivo multicolor bioluminescence applications, red and near-infrared signals are desirable over shorter wavelength signals because they are not as susceptible to light attenuation by blood and tissue. Herein, we describe the development of a new click beetle luciferase mutant, CBG2, with a red-shifted color emission. When paired with NH2-NpLH2 luciferin, CBG2 (λ = 660 nm) and CBR2 (λ = 730 nm) luciferases can be used for simultaneous dual-color bioluminescence imaging in deep tissue. Using a spectral unmixing algorithm tool it is possible to distinguish each spectral contribution. Ultimately, this enzyme pair can expand the near-infrared bioluminescent toolbox to enable rapid visualization of multiple biological processes in deep tissue using a single substrate.Optical Imaging; Biological Services; Biophysic

    5,5-Dialkylluciferins are thermal stable substrates for bioluminescence-based detection systems.

    No full text
    Firefly luciferase-based ATP detection assays are frequently used as a sensitive, cost-efficient method for monitoring hygiene in many industrial settings. Solutions of detection reagent, containing a mixture of a substrate and luciferase enzyme that produces photons in the presence of ATP, are relatively unstable and maintain only a limited shelf life even under refrigerated conditions. It is therefore common for the individual performing a hygiene test to manually prepare fresh reagent at the time of monitoring. To simplify sample processing, a liquid detection reagent with improved thermal stability is needed. The engineered firefly luciferase, Ultra-Glo™, fulfills one aspect of this need and has been valuable for hygiene monitoring because of its high resistance to chemical and thermal inactivation. However, solutions containing both Ultra-Glo™ luciferase and its substrate luciferin gradually lose the ability to effectively detect ATP over time. We demonstrate here that dehydroluciferin, a prevalent oxidative breakdown product of luciferin, is a potent inhibitor of Ultra-Glo™ luciferase and that its formation in the detection reagent is responsible for the decreased ability to detect ATP. We subsequently found that dialkylation at the 5-position of luciferin (e.g., 5,5-dimethylluciferin) prevents degradation to dehydroluciferin and improves substrate thermostability in solution. However, since 5,5-dialkylluciferins are poorly utilized by Ultra-Glo™ luciferase as substrates, we used structural optimization of the luciferin dialkyl modification and protein engineering of Ultra-Glo™ to develop a luciferase/luciferin pair that shows improved total reagent stability in solution at ambient temperature. The results of our studies outline a novel luciferase/luciferin system that could serve as foundations for the next generation of bioluminescence ATP detection assays with desirable reagent stability

    Click beetle luciferase mutant and near infrared naphthyl-luciferins for improved bioluminescence imaging

    Get PDF
    textabstractThe sensitivity of bioluminescence imaging in animals is primarily dependent on the amount of photons emitted by the luciferase enzyme at wavelengths greater than 620 nm where tissue penetration is high. This area of work has been dominated by firefly luciferase and its substrate, D-luciferin, due to the system's peak emission (~ 600 nm), high signal to noise ratio, and generally favorable biodistribution of D-luciferin in mice. Here we report on the development of a codon optimized mutant of click beetle red luciferase that produces substantially more light output than firefly luciferase when the two enzymes are compared in transplanted cells within the skin of black fur mice or in deep brain. The mutant enzyme utilizes two new naphthyl-luciferin substrates to produce near infrared emission (730 nm and 743 nm). The stable luminescence signal and near infrared emission enable unprecedented sensitivity and accuracy for performing deep tissue multispectral tomography in mice

    CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide

    No full text
    Intracellular signaling pathways are mediated by changes in protein abundance and post-translational modifications. A common approach for investigating signaling mechanisms and the effects induced by synthetic compounds is through overexpression of recombinant reporter genes. Genome editing with CRISPR/Cas9 offers a means to better preserve native biology by appending reporters directly onto the endogenous genes. An optimal reporter for this purpose would be small to negligibly influence intracellular processes, be readily linked to the endogenous genes with minimal experimental effort, and be sensitive enough to detect low expressing proteins. HiBiT is a 1.3 kDa peptide (11 amino acids) capable of producing bright and quantitative luminescence through high affinity complementation (<i>K</i><sub>D</sub> = 700 pM) with an 18 kDa subunit derived from NanoLuc (LgBiT). Using CRISPR/Cas9, we demonstrate that HiBiT can be rapidly and efficiently integrated into the genome to serve as a reporter tag for endogenous proteins. Without requiring clonal isolation of the edited cells, we were able to quantify changes in abundance of the hypoxia inducible factor 1A (HIF1α) and several of its downstream transcriptional targets in response to various stimuli. In combination with fluorescent antibodies, we further used HiBiT to directly correlate HIF1α levels with the hydroxyproline modification that mediates its degradation. These results demonstrate the ability to efficiently tag endogenous proteins with a small luminescent peptide, allowing sensitive quantitation of the response dynamics in their regulated expression and covalent modifications

    CRISPR-Mediated Tagging of Endogenous Proteins with a Luminescent Peptide

    No full text
    Intracellular signaling pathways are mediated by changes in protein abundance and post-translational modifications. A common approach for investigating signaling mechanisms and the effects induced by synthetic compounds is through overexpression of recombinant reporter genes. Genome editing with CRISPR/Cas9 offers a means to better preserve native biology by appending reporters directly onto the endogenous genes. An optimal reporter for this purpose would be small to negligibly influence intracellular processes, be readily linked to the endogenous genes with minimal experimental effort, and be sensitive enough to detect low expressing proteins. HiBiT is a 1.3 kDa peptide (11 amino acids) capable of producing bright and quantitative luminescence through high affinity complementation (<i>K</i><sub>D</sub> = 700 pM) with an 18 kDa subunit derived from NanoLuc (LgBiT). Using CRISPR/Cas9, we demonstrate that HiBiT can be rapidly and efficiently integrated into the genome to serve as a reporter tag for endogenous proteins. Without requiring clonal isolation of the edited cells, we were able to quantify changes in abundance of the hypoxia inducible factor 1A (HIF1α) and several of its downstream transcriptional targets in response to various stimuli. In combination with fluorescent antibodies, we further used HiBiT to directly correlate HIF1α levels with the hydroxyproline modification that mediates its degradation. These results demonstrate the ability to efficiently tag endogenous proteins with a small luminescent peptide, allowing sensitive quantitation of the response dynamics in their regulated expression and covalent modifications

    Deciphering the Cellular Targets of Bioactive Compounds Using a Chloroalkane Capture Tag

    No full text
    Phenotypic screening of compound libraries is a significant trend in drug discovery, yet success can be hindered by difficulties in identifying the underlying cellular targets. Current approaches rely on tethering bioactive compounds to a capture tag or surface to allow selective enrichment of interacting proteins for subsequent identification by mass spectrometry. Such methods are often constrained by ineffective capture of low affinity and low abundance targets. In addition, these methods are often not compatible with living cells and therefore cannot be used to verify the pharmacological activity of the tethered compounds. We have developed a novel chloroalkane capture tag that minimally affects compound potency in cultured cells, allowing binding interactions with the targets to occur under conditions relevant to the desired cellular phenotype. Subsequent isolation of the interacting targets is achieved through rapid lysis and capture onto immobilized HaloTag protein. Exchanging the chloroalkane tag for a fluorophore, the putative targets identified by mass spectrometry can be verified for direct binding to the compound through resonance energy transfer. Using the interaction between histone deacetylases (HDACs) and the inhibitor, Vorinostat (SAHA), as a model system, we were able to identify and verify all the known HDAC targets of SAHA as well as two previously undescribed targets, ADO and CPPED1. The discovery of ADO as a target may provide mechanistic insight into a reported connection between SAHA and Huntington’s disease
    corecore