8,437 research outputs found

    Energy-level ordering and ground-state quantum numbers for frustrated two-leg spin-1/2 ladder model

    Full text link
    The Lieb-Mattis theorem about antiferromagnetic ordering of energy levels on bipartite lattices is generalized to finite-size two-leg spin-1/2 ladder model frustrated by diagonal interactions. For reflection-symmetric model with site-dependent interactions we prove exactly that the lowest energies in sectors with fixed total spin and reflection quantum numbers are monotone increasing functions of total spin. The nondegeneracy of most levels is proved also. We also establish the uniqueness and obtain the spin value of the lowest-level multiplet in the whole sector formed by reflection-symmetric (antisymmetric) states. For a wide range of coupling constants, we prove that the ground state is a unique spin singlet. For other values of couplings, it may be also a unique spin triplet or may consist of both multiplets. Similar results have been obtained for the ladder with arbitrary boundary impurity spin. Some partial results have also been obtained in the case of periodical boundary conditions.Comment: 17 page

    Antiferromagnetic ordering of energy levels for spin ladder with four-spin cyclic exchange: Generalization of the Lieb-Mattis theorem

    Full text link
    The Lieb-Mattis theorem is generalized to an antiferromagnetic spin-ladder model with four-spin cyclic exchange interaction. We prove that for J>2K, the antiferromagnetic ordering of energy levels takes place separately in two sectors, which remain symmetric and antisymmetric under the reflection with respect to the longitudinal axis of the ladder. We prove also that at the self-dual point J=2K, the Lieb-Mattis rule holds in the sectors with fixed number of rung singlets. In both cases, it agrees with the similar rule for Haldane chain with appropriate spin number.Comment: 4 pages, some references updated and added, typos corrected, to appear in Phys. Rev.

    Lower Bounds on the Ground State Entropy of the Potts Antiferromagnet on Slabs of the Simple Cubic Lattice

    Full text link
    We calculate rigorous lower bounds for the ground state degeneracy per site, WW, of the qq-state Potts antiferromagnet on slabs of the simple cubic lattice that are infinite in two directions and finite in the third and that thus interpolate between the square (sq) and simple cubic (sc) lattices. We give a comparison with large-qq series expansions for the sq and sc lattices and also present numerical comparisons.Comment: 7 pages, late

    Two-dimensional magnetism in the pnictide superconductor parent material SrFeAsF probed by muon-spin relaxation

    Full text link
    We report muon-spin relaxation measurements on SrFeAsF, which is the parent compound of a newly discovered iron-arsenic-fluoride based series of superconducting materials. We find that this material has very similar magnetic properties to LaFeAsO, such as separated magnetic and structural transitions (TN = 120 K, Ts = 175 K), contrasting with SrFe2As2 where they are coincident. The muon oscillation frequencies fall away very sharply at TN, which suggests that the magnetic exchange between the layers is weaker than in comparable oxypnictide compounds. This is consistent with our specific heat measurements, which find that the entropy change S = 0.05 J/mol/K largely occurs at the structural transition and there is no anomaly at TN.Comment: 4 pages, 3 figure

    The phase transition in the localized ferromagnet EuO probed by muSR

    Get PDF
    We report results of muon spin rotation measurements performed on the ferromagnetic semiconductor EuO, which is one of the best approximations to a localized ferromagnet. We argue that implanted muons are sensitive to the internal field primarily through a combination of hyperfine and Lorentz fields. The temperature dependences of the internal field and the relaxation rate have been measured and are compared with previous theoretical predictions.Comment: 4 pages, 4 figure

    Quantal interferometry with dissipative internal motion

    Full text link
    In presence of dissipation, quantal states may acquire complex-valued phase effects. We suggest a notion of dissipative interferometry that accommodates this complex-valued structure and that may serve as a tool for analyzing the effect of certain kinds of external influences on quantal interference. The concept of mixed-state phase and concomitant gauge invariance is extended to dissipative internal motion. The resulting complex-valued mixed-state interference effects lead to well-known results in the unitary limit and in the case of dissipative motion of pure quantal states. Dissipative interferometry is applied to fault-tolerant geometric quantum computation.Comment: Slight revision, journal reference adde

    Optimal Unambiguous State Discrimination of two density matrices and its link with the Fidelity

    Full text link
    Recently the problem of Unambiguous State Discrimination (USD) of mixed quantum states has attracted much attention. So far, bounds on the optimum success probability have been derived [1]. For two mixed states they are given in terms of the fidelity. Here we give tighter bounds as well as necessary and sufficient conditions for two mixed states to reach these bounds. Moreover we construct the corresponding optimal measurement strategies. With this result, we provide analytical solutions for unambiguous discrimination of a class of generic mixed states. This goes beyond known results which are all reducible to some pure state case. Additionally, we show that examples exist where the bounds cannot be reached.Comment: 10 page

    Magnetic order in the quasi-one-dimensional spin 1/2 chain, copper pyrazine dinitrate

    Get PDF
    We present the first evidence of magnetic order in the quasi-one-dimensional spin 1/2 molecular chain compound, copper pyrazine dinitrate Cu(C4H4N2)(NO3)2}. Zero field muon-spin relaxation measurements made at dilution refrigerator temperatures show oscillations in the measured asymmetry, characteristic of a quasistatic magnetic field at the muon sites. Our measurements provide convincing evidence for long range magnetic order below a temperature T_N=107(1) mK. This leads to an estimate of the interchain coupling constant of |J'|/k_B=0.046 K and to a ratio |J'/J| = 4.4 x 10^-3.Comment: 4 pages, 3 figures. Submitted to Physical Review Letter

    Muon-spin relaxation and heat capacity measurements on the magnetoelectric and multiferroic pyroxenes LiFeSi2O6 and NaFeSi2O6

    Full text link
    The results of muon-spin relaxation and heat capacity measurements on two pyroxene compounds LiFeSi2O6 and NaFeSi2O6 demonstrate that despite their underlying structural similarity the magnetic ordering is considerably different. In LiFeSi2O6 a single muon precession frequency is observed below TN, consistent with a single peak at TN in the heat capacity and a commensurate magnetic structure. In applied magnetic fields the heat capacity peak splits in two. In contrast, for natural NaFeSi2O6, where multiferroicity has been observed in zero-magnetic-field, a rapid Gaussian depolarization is observed showing that the magnetic structure is more complex. Synthetic NaFeSi2O6 shows a single muon precession frequency but with a far larger damping rate than in the lithium compound. Heat capacity measurements reproduce the phase diagrams previously derived from other techniques and demonstrate that the magnetic entropy is mostly associated with the build up of correlations in the quasi-one-dimensional Fe3+ chains
    corecore