121 research outputs found

    Perioperative probiotics attenuates postoperative cognitive dysfunction in elderly patients undergoing hip or knee arthroplasty: A randomized, double-blind, and placebo-controlled trial

    Get PDF
    BackgroundPostoperative cognitive dysfunction (POCD) is a common complication in elderly patients following surgery. The preventive and/or treatment strategies for the incidence remain limited.ObjectiveThis study aimed to investigate the preventive effect of perioperative probiotic treatment on POCD in elderly patients undergoing hip or knee arthroplasty.MethodsAfter obtaining ethical approval and written informed consent, 106 patients (age ≥60 years) were recruited, who scheduled elective hip or knee arthroplasty, from 16 March 2021 to 25 February 2022 for this randomized, double-blind, and placebo-controlled trial. They were randomly assigned with a 1:1 ratio to receive either probiotics or placebo treatment (four capsules, twice/day) from hospital admission until discharge. Cognitive function was assessed with a battery of 11 neuropsychological tests on the admission day and the seventh day after surgery, respectively.ResultsA total of 96 of 106 patients completed the study, and their data were finally analyzed. POCD occurred in 12 (26.7%) of 45 patients in the probiotic group and 29 (56.9%) of 51 patients in the placebo group (relative risk [RR], 0.47 [95% confidence interval [CI], 0.27 to 0.81]; P = 0.003). Among them, mild POCD occurred in 11 (24.4%) in the probiotic group and 24 (47.1%) in the placebo group (RR, 0.52 [95% CI, 0.29 to 0.94]; P = 0.022). No significant difference in severe POCD incidence was found between the two groups (P = 0.209). Compared with the placebo group, the verbal memory domain cognitive function was mainly improved in the probiotic group.ConclusionProbiotics may be used perioperatively to prevent POCD development and improve verbal memory performance in elderly patients receiving hip or knee arthroplasty.Clinical trial registrationwww.chictr.org.cn, identifier: ChiCTR2100045620

    Identification of genes regulated by Wnt/β-catenin pathway and involved in apoptosis via microarray analysis

    Get PDF
    BACKGROUND: Wnt/β-catenin pathway has critical roles in development and oncogenesis. Although significant progress has been made in understanding the downstream signaling cascade of this pathway, little is known regarding Wnt/β-catenin pathway modification of the cellular apoptosis. METHODS: To identify potential genes regulated by Wnt/β-catenin pathway and involved in apoptosis, we used a stably integrated, inducible RNA interference (RNAi) vector to specific inhibit the expression and the transcriptional activity of β-catenin in HeLa cells. Meanwhile, we designed an oligonucleotide microarray covering 1384 apoptosis-related genes. Using oligonucleotide microarrays, a series of differential expression of genes was identified and further confirmed by RT-PCR. RESULTS: Stably integrated inducible RNAi vector could effectively suppress β-catenin expression and the transcriptional activity of β-catenin/TCF. Meanwhile, depletion of β-catenin in this manner made the cells more sensitive to apoptosis. 130 genes involved in some important cell-apoptotic pathways, such as PTEN-PI3K-AKT pathway, NF-κB pathway and p53 pathway, showed significant alteration in their expression level after the knockdown of β-catenin. CONCLUSION: Coupling RNAi knockdown with microarray and RT-PCR analyses proves to be a versatile strategy for identifying genes regulated by Wnt/β-catenin pathway and for a better understanding the role of this pathway in apoptosis. Some of the identified β-catenin/TCF directed or indirected target genes may represent excellent targets to limit tumor growth

    2D MXene Ti3C2Tx nanosheets in the development of a mechanically enhanced and efficient antibacterial dental resin composite

    Get PDF
    The bacterial accumulation at the margins of dental resin composites is a main cause of secondary caries, which may further lead to prosthodontic failure. In this regard, this study for the first time incorporated 2D MXene Ti3C2Tx nanosheets (NSs) into epoxy resin at different mass ratios (0, 0.5, 1.0, and 2.0 wt%) by solution blending and direct curing for dental applications. Compared to the pure resin, the as-fabricated MXene/resin composite not only exhibited improved mechanical and abrasive results but also displayed gradually improved antibacterial activity with MXene loading which was further enhanced by illumination in natural light due to the high photothermal efficiency of MXene. In addition, the cytotoxicity result demonstrated that the MXene-modified resin did not cause severe damage to normal cells. This novel MXene/resin nanocomposite could pave the way for new designs for high-performance, multifunctional nanocomposites to effectively protect dental health in daily life

    The discovery and characterization of AeHGO in the branching route from shikonin biosynthesis to shikonofuran in Arnebia euchroma

    Get PDF
    Shikonin derivatives are natural naphthoquinone compounds and the main bioactive components produced by several boraginaceous plants, such as Lithospermum erythrorhizon and Arnebia euchroma. Phytochemical studies utilizing both L. erythrorhizon and A. euchroma cultured cells indicate the existence of a competing route branching out from the shikonin biosynthetic pathway to shikonofuran. A previous study has shown that the branch point is the transformation from (Z)-3’’-hydroxy-geranylhydroquinone to an aldehyde intermediate (E)-3’’-oxo-geranylhydroquinone. However, the gene encoding the oxidoreductase that catalyzes the branch reaction remains unidentified. In this study, we discovered a candidate gene belonging to the cinnamyl alcohol dehydrogenase family, AeHGO, through coexpression analysis of transcriptome data sets of shikonin-proficient and shikonin-deficient cell lines of A. euchroma. In biochemical assays, purified AeHGO protein reversibly oxidized (Z)-3’’-hydroxy-geranylhydroquinone to produce (E)-3’’-oxo-geranylhydroquinone followed by reversibly reducing (E)-3’’-oxo-geranylhydroquinone to (E)-3’’-hydroxy-geranylhydroquinone, resulting in an equilibrium mixture of the three compounds. Time course analysis and kinetic parameters showed that the reduction of (E)-3’’-oxo-geranylhydroquinone was stereoselective and efficient in presence of NADPH, which determined that the overall reaction proceeded from (Z)-3’’-hydroxy-geranylhydroquinone to (E)-3’’-hydroxy-geranylhydroquinone. Considering that there is a competition between the accumulation of shikonin and shikonofuran derivatives in cultured plant cells, AeHGO is supposed to play an important role in the metabolic regulation of the shikonin biosynthetic pathway. Characterization of AeHGO should help expedite the development of metabolic engineering and synthetic biology toward production of shikonin derivatives

    MeJA regulates the accumulation of baicalein and other 4’-hydroxyflavones during the hollowed root development in Scutellaria baicalensis

    Get PDF
    The dried roots of Scutellaria baicalensis are important traditional Chinese medicine used to treat liver and lung inflammation. An anomalous structure, hollowed root, was discovered in perennial cultivated Scutellaria baicalensis. The presence of the hollow may change the contents of bioactive metabolites, such as baicalein, and other 4’-hydroxyflavones in Scutellaria baicalensis roots, but the relationship between the hollowed root and bioactive metabolite contents is poorly understood. In this study, we identified the anatomical structure of the hollowed root and detected differentially accumulating flavonoid metabolites and enzymes related to 4’-hydroxyflavone biosynthesis in 3-year-old roots with a hollow. We confirmed that methyl jasmonate (MeJA) induced the accumulation of 4’-hydroxyflavones and the expression of enzymes related to 4’-hydroxyflavone biosynthesis in hydroponically cultured Scutellaria baicalensis roots. The development of the hollowed root were divided into 4 stages. The 4’-hydroxyflavone contents and expression of enzymes related to 4’-hydroxyflavone biosynthesis increased synchronously with the content of MeJA during the development of hollowed root. Pathogen and programed-cell-death related genes were induced during hollowed root development. Taken together, our results provide novel insight into the importance of MeJA in the development of hollowed root and the accumulation of 4’-hydroxyflavones in Scutellaria baicalensis roots. Our results suggest that a pathogen and senescence are the two major causes for the development of hollowed root in Scutellaria baicalensis roots
    • …
    corecore