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Abstract
In this paper, several weak and strong convergence theorems are established for a
new modified iteration with errors for a finite family of nonself mappings which are
asymptotically nonexpansive in the intermediate sense in Banach spaces. Mann-type,
Ishikawa-type and Noor-type iterations are covered by this new iteration scheme. Our
convergence theorems improve, unify and generalize many important results in the
current literature.
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1 Introduction
Fixed-point iteration processes for nonexpansive and asymptotically nonexpansive map-
pings includingMann-type and Ishikawa-type iterations have been studied extensively by
many authors (see [–] and the references cited therein). In , Schu [] considered
the modified Mann iteration process for an asymptotically nonexpansive map. Later, Tan
and Xu [] studied the modified Ishikawa iteration process for an asymptotically non-
expansive map. Noor, in , introduced a three-step iterative scheme and studied the
approximate solutions of variational inclusion in Hilbert spaces []. Later, Cho et al. [],
Xu and Noor [] studied weak and strong convergence theorems for the three-step Noor
iterations with errors for asymptotically nonexpansive mappings in a uniformly convex
Banach space which satisfies Opial’s condition or whose norm is Fréchet differentiable.
Takahashi and Tamura [], Shahzad [] dealt with the iterative scheme for a pair of
nonexpansive and asymptotically nonexpansive mappings in a uniformly convex Banach
space. In , Plubtieng et al. [] studied a class of three-step iterative scheme, for three
asymptotically nonexpansive mappings, in a uniformly convex Banach space satisfying
Opial’s condition. In , Fukhar-ud-dina and Khan [] studied the scheme for three
nonexpansive mappings in a uniformly convex Banach space which has Opial’s condition
or which has a Fréchet differentiable norm or whose dual space has the Kadec-Klee prop-
erty. Also in , Chidume and Bashir Ali [] introduced the iterative scheme for a finite
family of asymptotically nonexpansive mappings and obtained the weak and strong con-
vergence theorems in a Banach space whose dual space satisfies the Kadec-Klee property.
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Inmost of these papers, themap T has been assumed tomapC into itself. If, however, C
is a proper subset of a Banach space X and T maps C into X (as is the case in many appli-
cations), then {xn} may not be well defined. One method that has been used to overcome
this is to introduce a retraction P : X → C. Recent results on the approximation of fixed
points of nonexpansive and asymptotically nonexpansive nonself mappings can be found
in [–] and references contained therein.
In , Chidume et al. [] introduced the following modified Mann iteration process

and got the weak and strong convergence theorems for an asymptotically nonexpansive
nonself mapping:

x ∈ C, xn+ = P
[
αnxn + ( – αn)T(PT)n–xn

]
, n≥ .

Recently, Wang [] generalized the above iteration process as follows: x ∈ C,

xn+ = P
[
αnxn + ( – αn)T(PT)n–yn

]
;

yn = P
[
βnxn + ( – βn)T(PT)n–xn

]
.

In , Chidume and Bashir Ali [] introduced the following iteration process for a
finite family of asymptotically nonexpansive nonself mappings: x ∈ C and

xn+ = P
[
αnxn + ( – αn)T(PT)n–yn+m–

]
;

yn+m– = P
[
αnxn + ( – αn)T(PT)n–yn+m–

]
;

· · ·
yn = P

[
αmnxn + ( – αmn)Tm(PTm)n–xn

]
.

They proved strong convergence theorems in uniformly convex Banach spaces and gave
the weak convergence theorem in uniformly convex Banach spaces that satisfy Opial’s
condition or have a Fréchet differentiable norm. They also gave the weak convergence
theorem for nonexpansive nonself mappings in uniformly convex Banach spaces whose
dual spaces have the Kadec-Klee property (see []).
The concept of asymptotically nonexpansive nonselfmappings in the intermediate sense

was introduced by Chidume et al. [] as an important generalization of asymptotically
nonexpansive self-mappings in the intermediate sense.

Definition . Let C be a nonempty subset of a Banach space X. Let P : X → C be a non-
expansive retraction of X onto C. A nonself mapping T : C → X is called asymptotically
nonexpansive in the intermediate sense if T is continuous and the following inequality
holds:

lim sup
n→+∞

sup
x,y∈C

(∥∥T(PT)n–x – T(PT)n–y
∥∥ – ‖x – y‖) ≤ .

It should be noted that in [, , ], an asymptotically nonexpansivemapping in the in-
termediate sense is required to be uniformly continuous. In Definition ., we assume the
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continuity of T instead of uniform continuity. Chidume et al. [], Plubtieng and Wang-
keeree [], Kim and Kim [] gave strong convergence theorems for a uniformly continu-
ousmapping which is asymptotically nonexpansive in the intermediate sense in uniformly
convex Banach spaces if the mapping is completely continuous. Also, Chidume et al. []
gave the weak convergence theorem for such a mapping in a uniformly convex Banach
space whose dual space has the Kadec-Klee property. However, as we know, it remains
open whether the weak convergence theorem of a multi-step iteration process with errors
for a finite family of continuous nonself mappings which are asymptotically nonexpan-
sive in the intermediate sense holds in a uniformly convex Banach space which satisfies
Opial’s condition or whose dual space has the Kadec-Klee property. Since the asymptoti-
cally nonexpansive mappings in the intermediate sense are non-Lipschitzian and Bruck’s
lemma [] does not extend beyond Lipschitzian mappings, new techniques are needed
for this more general case. It is our purpose in this paper to study the following iteration
process with errors for approximating common fixed points of a finite family of nonself
mappings which are asymptotically nonexpansive in the intermediate sense:

x ∈ C;

xn+ = P
[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
;

y(N–)
n = P

[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
;

· · ·
y()n = P

[
α(N–)
n xn + β (N–)

n TN–(PTN–)n–y()n + γ (N–)
n u(N–)

n
]
;

y()n = P
[
α(N)
n xn + β (N)

n TN (PTN )n–xn + γ (N)
n u(N)

n
]
.

(.)

In Section , using the technique established in [], we first give some weak conver-
gence theorems of the iterative scheme (.) for a finite family of nonself mappings which
are asymptotically nonexpansive in the intermediate sense in a uniformly convex Banach
space which satisfies Opial’s condition or whose dual space has the Kadec-Klee property.
We also establish some strong convergence theorems if one member of the finite family of
mappings satisfies a condition weaker than complete continuity. Our results extend and
improve the recently announced ones [, , , , , , , , , , , , , , , ]
and many others.

2 Preliminaries
Let C be a nonempty closed convex subset of a Banach space X. Recall that a Banach space
X is said to be uniformly convex if, for each ε ∈ [, ), the modulus of convexity of X given
by

δ(ε) = inf

{
 –



‖x + y‖ : ‖x‖ ≤ ,‖y‖ ≤ ,‖x – y‖ ≥ ε

}

satisfies the inequality δ(ε) >  for all ε > . We say that X has the Kadec-Klee property if,
for every sequence {xn} ⊂ X, whenever xn ⇀ x with ‖xn‖ → ‖x‖, it follows that xn → x.
We would like to remark that a reflexive Banach space X with a Fréchet differentiable
norm implies that its dual X∗ has the Kadec-Klee property, while the converse implication
fails [].
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Recall that a Banach space X is said to satisfy Opial’s condition [] if xn ⇀ x and x 
= y
implies that

lim sup
n→+∞

‖xn – x‖ < lim sup
n→+∞

‖xn – y‖.

A subset C of X is said to be a retract if there exists a continuous mapping P : X → C
such that Px = x for all x ∈ C. Every closed convex subset of a uniformly convex Banach
space is a retract. A mapping P : X → X is said to be a retraction if P = P. It follows that
if a map P is a retraction, then Py = y for all y in the range of P.

Lemma . [] Let the nonnegative number sequences {cn} and {wn} satisfy

cn+ ≤ cn +wn, n = , , . . . .

If
∑+∞

n= wn < +∞, then limn→+∞ cn exists.

Lemma . [] Suppose that X is a uniformly convex Banach space and for all pos-
itive integers n,  < p ≤ tn ≤ q < . If {xn} and {yn} are two sequences of X such that
lim supn→+∞ ‖xn‖ ≤ r, lim supn→+∞ ‖yn‖ ≤ r and

lim
n→+∞

∥∥tnxn + ( – tn)yn
∥∥ = r

hold for some r ≥ . Then limn→+∞ ‖xn – yn‖ = .

Lemma . [] Let X be a uniformly convex Banach space. If ‖x‖ ≤ , ‖y‖ ≤  and ‖x –
y‖ ≥ ε > , then for all λ ∈ [, ],

∥∥λx + ( – λ)y
∥∥ ≤  – λ( – λ)δ(ε).

Lemma . (Demiclosedness principle for a nonself-map []) Let C be a nonempty
closed convex subset of a uniformly convex Banach space X and let T : C → X be a nonself
mapping which is continuous and asymptotically nonexpansive in the intermediate sense.
If {xn} is a sequence in C converging weakly to x and

lim
m→+∞ lim sup

n→+∞

∥∥xn – T(PT)m–xn
∥∥ = ,

then x ∈ F(T), i.e., Tx = x.

Lemma . [] Let X be a reflexive Banach space whose dual X∗ has the Kadec-Klee
property. Let {xn} be a bounded sequence in X and f , g ∈ ωω({xn}). Suppose that

h(λ) = lim
n→+∞

∥∥λxn + ( – λ)f – g
∥∥

exists for all λ ∈ [, ], then f = g ,where ωω({xn}) denotes the set of weak limit points of {xn},
i.e., ωω({xn}) = {p ∈ X : there exists a subsequence {xni} ⊂ {xn} such that xni ⇀ p}.
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3 Main results
In this section, let X be a uniformly convex Banach space and let C be a nonempty closed
convex subset of X. Let P : X → C be a nonexpansive retraction from X onto C. Let
T,T, . . . ,TN : C → X be a finite family of continuous nonself mappings which are asymp-
totically nonexpansive in the intermediate sense, then we can suppose that

rn =max
{
, sup

x,y∈C

(∥∥Ti(PTi)n–x – Ti(PTi)n–y
∥∥ – ‖x – y‖)}, i = , , . . . ,N .

Hence rn ≥ , limn→+∞ rn =  and for all x, y ∈ C,

∥∥Ti(PTi)n–x – Ti(PTi)n–y
∥∥ – ‖x – y‖ ≤ rn, n ≥ , i = , , . . . ,N .

For a given x ∈ C, we can define the sequence {xn} ⊂ C by

xn+ = P
[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
;

y(N–)
n = P

[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
;

· · ·
y()n = P

[
α(N–)
n xn + β (N–)

n TN–(PTN–)n–y()n + γ (N–)
n u(N–)

n
]
;

y()n = P
[
α(N)
n xn + β (N)

n TN (PTN )n–xn + γ (N)
n u(N)

n
]
,

(.)

where {α(i)
n }, {β (i)

n }, {γ (i)
n } are in [, ] with  < p ≤ α

(i)
n ,β (i)

n ≤ q < , α
(i)
n + β

(i)
n + γ

(i)
n = ,∑+∞

n= γ
(i)
n < +∞ and {u(i)n } are bounded sequences in X, i = , , . . . ,N .

We start our investigation with the following lemmas, which are preparation for the
proofs of themain results of this section. In the following, we always assume that

∑+∞
n= rn <

+∞ and the set of common fixed points of {T,T, . . . ,TN } is nonempty, i.e.,

N⋂
i=

F(Ti) =
N⋂
i=

{x ∈ C : Tix = x} 
= ∅.

Lemma .

lim
n→+∞‖xn – f ‖ = r

exists for each f ∈ ⋂N
i= F(Ti).

Proof Let f ∈ ⋂N
i= F(Ti). Since {u(i)n } are bounded, we can set

M = sup
{∥∥u(i)n – f

∥∥ : i = , , . . . ,N ,n≥ 
}
< +∞.

Then

∥∥y()n – f
∥∥

=
∥∥P[

α(N)
n xn + β (N)

n TN (PTN )n–xn + γ (N)
n u(N)

n
]
– f

∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/170
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≤ ∥∥[
α(N)
n xn + β (N)

n TN (PTN )n–xn + γ (N)
n u(N)

n
]
– f

∥∥
≤ α(N)

n ‖xn – f ‖ + β (N)
n

∥∥TN (PTN )n–xn – f
∥∥ + γ (N)

n
∥∥u(N)

n – f
∥∥

≤ ‖xn – f ‖ + rn +Mγ (N)
n . (.)

Hence we can get

∥∥y()n – f
∥∥

≤ ∥∥[
α(N–)
n xn + β (N–)

n TN–(PTN–)n–y()n + γ (N–)
n u(N–)

n
]
– f

∥∥
≤ α(N–)

n ‖xn – f ‖ + β (N–)
n

∥∥TN–(PTN–)n–y()n – f
∥∥ + γ (N–)

n
∥∥u(N–)

n – f
∥∥

≤ α(N–)
n ‖xn – f ‖ + β (N–)

n
(∥∥y()n – f

∥∥ + rn
)
+Mγ (N–)

n

≤ α(N–)
n ‖xn – f ‖ + β (N–)

n
(‖xn – f ‖ + rn +Mγ (N)

n
)
+Mγ (N–)

n

= ‖xn – f ‖ + rn +M
(
γ (N)
n + γ (N–)

n
)

· · · (.)

and

∥∥y(N–)
n – f

∥∥
≤ ∥∥[

α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
– f

∥∥
≤ α()

n ‖xn – f ‖ + β ()
n

∥∥T(PT)n–y(N–)
n – f

∥∥ + γ ()
n

∥∥u()n – f
∥∥

≤ α()
n ‖xn – f ‖ + β ()

n
(∥∥y(N–)

n – f
∥∥ + rn

)
+Mγ ()

n

≤ ‖xn – f ‖ + (N – )rn +M
(
γ (N)
n + · · · + γ ()

n + γ ()
n

)
. (.)

Thus we obtain

‖xn+ – f ‖
≤ ∥∥[

α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
– f

∥∥
≤ α()

n ‖xn – f ‖ + β ()
n

∥∥T(PT)n–y(N–)
n – f

∥∥ + γ ()
n

∥∥u()n – f
∥∥

≤ α()
n ‖xn – f ‖ + β ()

n
(∥∥y(N–)

n – f
∥∥ + rn

)
+Mγ ()

n

≤ ‖xn – f ‖ +Nrn +M
(
γ (N)
n + · · · + γ ()

n + γ ()
n

)
. (.)

Set wn =Nrn +M(γ (N)
n + γ

(N–)
n + · · · + γ

()
n ), then

∑+∞
n= wn < +∞ and

‖xn+ – f ‖ ≤ ‖xn – f ‖ +wn. (.)

By Lemma ., we have that

lim
n→+∞‖xn – f ‖ = r

exists. This completes the proof. �

http://www.fixedpointtheoryandapplications.com/content/2013/1/170
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Lemma .

lim
m→+∞ lim sup

n→+∞

∥∥xn – Ti(PTi)m–xn
∥∥ = , i = , , . . . ,N .

Proof By Lemma ., we have that limn→+∞ ‖xn – f ‖ = r exists. If r = , then it is obvious
to see that the conclusion holds. In the following, we assume that r > . According to (.),
(.) and (.), we can get

lim sup
n→+∞

∥∥y(j)n – f
∥∥ ≤ r, j = , , . . . ,N – .

Then, for any j = , , . . . ,N – ,

lim sup
n→+∞

∥∥TN––j(PTN––j)n–y(j)n – f
∥∥ ≤ r,

and hence the sequences {TN––j(PTN––j)n–y
(j)
n }+∞

n= are bounded. By (.), we can obtain

lim
n→+∞

∥∥[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
– f

∥∥ = r.

We also can see

lim sup
n→+∞

∥∥T(PT)n–y(N–)
n – f + γ ()

n
(
u()n – xn

)∥∥ ≤ r

and

lim sup
n→+∞

∥∥xn – f + γ ()
n

(
u()n – xn

)∥∥ ≤ r.

It follows from Lemma . and

r = lim
n→+∞

∥∥[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
– f

∥∥
= lim

n→+∞
∥∥(
 – α()

n
)[
T(PT)n–y(N–)

n – f + γ ()
n

(
u()n – xn

)]
+ α()

n
[
xn – f + γ ()

n
(
u()n – xn

)]
+ γ ()

n
[
xn – T(PT)n–y(N–)

n
]∥∥

= lim
n→+∞

∥∥(
 – α()

n
)[
T(PT)n–y(N–)

n – f + γ ()
n

(
u()n – xn

)]
+ α()

n
[
xn – f + γ ()

n
(
u()n – xn

)]∥∥
that

lim
n→+∞

∥∥T(PT)n–y(N–)
n – xn

∥∥ = . (.)

Combining it with

‖xn – f ‖ ≤ ∥∥xn – T(PT)n–y(N–)
n

∥∥ +
∥∥T(PT)n–y(N–)

n – f
∥∥

≤ ∥∥xn – T(PT)n–y(N–)
n

∥∥ +
∥∥y(N–)

n – f
∥∥ + rn,

http://www.fixedpointtheoryandapplications.com/content/2013/1/170
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we obtain

lim inf
n→+∞

∥∥y(N–)
n – f

∥∥ ≥ r.

Thus limn→+∞ ‖y(N–)
n – f ‖ = r, according to (.), we have

r = lim
n→+∞

∥∥[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
– f

∥∥
= lim

n→+∞
∥∥(
 – α()

n
)[
T(PT)n–y(N–)

n – f + γ ()
n

(
u()n – xn

)]
+ α()

n
[
xn – f + γ ()

n
(
u()n – xn

)]
+ γ ()

n
[
xn – T(PT)n–y(N–)

n
]∥∥

= lim
n→+∞

∥∥(
 – α()

n
)[
T(PT)n–y(N–)

n – f + γ ()
n

(
u()n – xn

)]
+ α()

n
[
xn – f + γ ()

n
(
u()n – xn

)]∥∥.
Noting

lim sup
n→+∞

∥∥T(PT)n–y(N–)
n – f + γ ()

n
(
u()n – xn

)∥∥ ≤ r

and

lim sup
n→+∞

∥∥xn – f + γ ()
n

(
u()n – xn

)∥∥ ≤ r,

by Lemma . again, we have

lim
n→+∞

∥∥T(PT)n–y(N–)
n – xn

∥∥ = . (.)

Similarly, we can get

lim
n→+∞

∥∥T(PT)n–y(N–)
n – xn

∥∥ = · · · = lim
n→+∞

∥∥TN–(PTN–)n–y()n – xn
∥∥

= lim
n→+∞

∥∥TN (PTN )n–xn – xn
∥∥ = .

Therefore, by (.) and (.),

lim
n→+∞‖xn+ – xn‖ ≤ lim

n→+∞
∥∥β ()

n
[
T(PT)n–y(N–)

n – xn
]
+ γ ()

n
(
u()n – xn

)∥∥ = 

and similarly, we can have

lim
n→+∞

∥∥y(N–)
n – xn

∥∥ = · · · = lim
n→+∞

∥∥y()n – xn
∥∥ = lim

n→+∞
∥∥y()n – xn

∥∥ = .

It follows from the inequality (.) and

∥∥T(PT)n–xn – xn
∥∥

≤ ∥∥T(PT)n–xn – T(PT)n–y(N–)
n

∥∥ +
∥∥T(PT)n–y(N–)

n – xn
∥∥

≤ ∥∥xn – y(N–)
n

∥∥ + rn +
∥∥T(PT)n–y(N–)

n – xn
∥∥

http://www.fixedpointtheoryandapplications.com/content/2013/1/170
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that

lim
n→+∞

∥∥T(PT)n–xn – xn
∥∥ = . (.)

Thus, for any fixedm, we have limn→+∞ ‖xn – xn+m‖ =  and

∥∥xn – T(PT)m–xn
∥∥

≤ ‖xn – xn+m‖ + ∥∥xn+m – T(PT)n+m–xn+m
∥∥

+
∥∥T(PT)n+m–xn+m – T(PT)n+m–xn

∥∥ +
∥∥T(PT)n+m–xn – T(PT)m–xn

∥∥
≤ ‖xn – xn+m‖ + ∥∥xn+m – T(PT)n+m–xn+m

∥∥ + rn+m +
∥∥(PT)nxn – xn

∥∥ + rm

≤ ‖xn – xn+m‖ + ∥∥xn+m – T(PT)n+m–xn+m
∥∥ + rn+m +

∥∥T(PT)n–xn – xn
∥∥ + rm.

This implies

lim sup
n→+∞

∥∥xn – T(PT)m–xn
∥∥ ≤ rm.

Therefore,

lim
m→+∞ lim sup

n→+∞

∥∥xn – T(PT)m–xn
∥∥ = .

Noting (.) and

∥∥T(PT)n–xn – xn
∥∥

≤ ∥∥T(PT)n–xn – T(PT)n–y(N–)
n

∥∥ +
∥∥T(PT)n–y(N–)

n – xn
∥∥

≤ ∥∥xn – y(N–)
n

∥∥ + rn +
∥∥T(PT)n–y(N–)

n – xn
∥∥,

we can see

lim
n→+∞

∥∥T(PT)n–xn – xn
∥∥ = .

Thus, for any fixedm,

∥∥xn – T(PT)m–xn
∥∥

≤ ‖xn – xn+m‖ + ∥∥xn+m – T(PT)n+m–xn+m
∥∥

+
∥∥T(PT)n+m–xn+m – T(PT)n+m–xn

∥∥ +
∥∥T(PT)n+m–xn – T(PT)m–xn

∥∥
≤ ‖xn – xn+m‖ + ∥∥xn+m – T(PT)n+m–xn+m

∥∥ + rn+m +
∥∥(PT)nxn – xn

∥∥ + rm

≤ ‖xn – xn+m‖ + ∥∥xn+m – T(PT)n+m–xn+m
∥∥ + rn+m +

∥∥T(PT)n–xn – xn
∥∥ + rm,

which means

lim sup
n→+∞

∥∥xn – T(PT)m–xn
∥∥ ≤ rm.
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Therefore,

lim
m→+∞ lim sup

n→+∞

∥∥xn – T(PT)m–xn
∥∥ = .

By the same argument, we can get

lim
n→+∞

∥∥xn – T(PT)m–xn
∥∥ = · · · = lim

n→+∞
∥∥xn – TN (PTN )m–xn

∥∥ = .

This completes the proof. �

Define the operatorWn : C → C by

Wnx = P
[
α()
n x + β ()

n T(PT)n–x(N–) + γ ()
n u()n

]
;

x(N–) = P
[
α()
n x + β ()

n T(PT)n–x(N–) + γ ()
n u()n

]
;

· · ·
x() = P

[
α(N–)
n x + β (N–)

n TN–(PTN–)n–x() + γ (N–)
n u(N–)

n
]
;

x() = P
[
α(N)
n x + β (N)

n TN (PTN )n–x + γ (N)
n u(N)

n
]
,

where x ∈ C. Then xn+ =Wnxn and for all x, y ∈ C, we have

∥∥x() – y()
∥∥ ≤ α(N)

n ‖x – y‖ + β (N)
n

∥∥TN (PTN )n–x – TN (PTN )n–y
∥∥

≤ ‖x – y‖ + rn,∥∥x() – y()
∥∥ ≤ α(N–)

n ‖x – y‖ + β (N–)
n

∥∥TN–(PTN–)n–x() – TN–(PTN–)n–y()
∥∥

≤ α(N–)
n ‖x – y‖ + β (N–)

n
(∥∥x() – y()

∥∥ + rn
)

≤ ‖x – y‖ + rn,

· · ·

and

‖Wnx –Wny‖ ≤ α()
n ‖x – y‖ + β ()

n
∥∥T(PT)n–x(N–) – T(PT)n–y(N–)∥∥

≤ α()
n ‖x – y‖ + β ()

n
(∥∥x(N–) – y(N–)∥∥ + rn

)
≤ α()

n ‖x – y‖ + β ()
n

(‖x – y‖ +Nrn
)

≤ ‖x – y‖ +wn. (.)

For any f ∈ ⋂N
i= F(Ti), we get

∥∥f () – f
∥∥ ≤ ∥∥α(N)

n f + β (N)
n TN (PTN )n–f + γ (N)

n u(N)
n – f

∥∥
= γ (N)

n
∥∥u(N)

n – f
∥∥ ≤ Mγ (N)

n ,∥∥f () – f
∥∥ ≤ β (N–)

n
∥∥f () – f

∥∥ + rn + γ (N–)
n

∥∥u(N–)
n – f

∥∥
≤ rn +M

(
γ (N)
n + γ (N–)

n
)
,
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· · ·∥∥f (N–) – f
∥∥ ≤ (N – )rn +M

(
γ (N)
n + · · · + γ ()

n
)

and

‖Wnf – f ‖ ≤ β ()
n

∥∥f (N–) – f
∥∥ + rn + γ ()

n
∥∥u()n – f

∥∥
≤ (N – )rn +M

(
γ (N)
n + · · · + γ ()

n
) ≤ wn. (.)

Set Sn,m =Wn+m–Wn+m– · · ·Wn+Wn : C → C, then xn+m = Sn,mxn and for any x, y ∈ C,

‖Sn,mx – Sn,my‖ ≤ ‖x – y‖ + (wn+m– + · · · +wn+ +wn). (.)

We also need the following lemma, which plays a crucial role in dealing with the case of
the iteration with errors. It is easy to see Sn,mf ≡ f if γ

(i)
n ≡  for all i = , , . . . ,N and all

n≥ .

Lemma .

lim
n→+∞ lim sup

m→+∞
‖Sn,mf – f ‖ = , ∀f ∈

N⋂
i=

F(Ti).

Proof By (.), (.) and

‖Sn,f – f ‖ = ‖Wn+Wnf – f ‖
≤ ‖Wn+Wnf –Wn+f ‖ + ‖Wn+f – f ‖
≤ ‖Wnf – f ‖ +wn+ +wn+

≤ wn + wn+,

· · ·
‖Sn,m–f – f ‖

≤ wn + wn+ + · · · + wn+m–,

we get

‖Sn,mf – f ‖ = ‖Wn+m–Sn,m–f – f ‖
≤ ‖Wn+m–Sn,m–f –Wn+m–f ‖ + ‖Wn+m–f – f ‖
≤ ‖Sn,m–f – f ‖ +wn+m– +wn+m–

≤ wn + wn+ + · · · + wn+m–

≤ (wn +wn+ + · · · +wn+m–). (.)

Then fixing n and taking the limsup form, we obtain

lim sup
m→+∞

‖Sn,mf – f ‖ ≤ 
+∞∑
i=n

wi.

http://www.fixedpointtheoryandapplications.com/content/2013/1/170
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Thus,

lim
n→+∞ lim sup

m→+∞
‖Sn,mf – f ‖ ≤ lim

n→+∞
+∞∑
i=n

wi = .

This completes the proof. �

Lemma . Let f , g ∈ ⋂N
i= F(Ti) and λ ∈ [, ], then

h(λ) = lim
n→+∞

∥∥λxn + ( – λ)f – g
∥∥

exists.

Proof It follows from Lemma . that r = limn→+∞ ‖xn – f ‖ exists. If λ = ,  or r = , then
the conclusion holds. In the following, we assume that r >  and λ ∈ (, ). Then, for any
ε > , there exists d >  (d < ε) such that

(r + d)
[
 – λ( – λ)δ

(
ε

r + d

)]
< r – d, (.)

where δ is the modulus of convexity of the norm. Hence there exists a positive integer n
such that for all n > n,

r –
d


≤ ‖xn – f ‖ ≤ r +
d


(.)

and

+∞∑
i=n

wi ≤ λ( – λ)
d

<

ε


. (.)

Now we claim that for all n > n,

∥∥Sn,m[
λxn + ( – λ)f

]
–

[
λSn,mxn + ( – λ)Sn,mf

]∥∥ ≤ ε, ∀m = , , . . . . (.)

Otherwise, we can suppose that

∥∥Sn,m[
λxn + ( – λ)f

]
–

[
λSn,mxn + ( – λ)Sn,mf

]∥∥ ≥ ε

for somem. Put z = λxn + ( – λ)f , x = ( – λ)(Sn,mz – Sn,mf ) and y = λ(Sn,mxn – Sn,mz), then
by (.), (.) and (.),

‖x‖ ≤ ( – λ)
(‖Sn,mz – Sn,mf ‖

)
≤ ( – λ)

[‖z – f ‖ + (wn+m– + · · · +wn+ +wn)
]

≤ λ( – λ)
(

‖xn – f ‖ + d


)
≤ λ( – λ)(r + d)

http://www.fixedpointtheoryandapplications.com/content/2013/1/170
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and

‖y‖ = λ‖Sn,mxn – Sn,mz‖
≤ λ

[‖xn – z‖ + (wn+m– + · · · +wn+ +wn)
]

≤ λ( – λ)
(

‖xn – f ‖ + d


)
≤ λ( – λ)(r + d).

We also have

‖x – y‖ = ∥∥Sn,m[
λxn + ( – λ)f

]
–

[
λSn,mxn + ( – λ)Sn,mf

]∥∥ ≥ ε

and

λx + ( – λ)y = λ( – λ)(Sn,mxn – Sn,mf ).

So, by using Lemma ., we get

λ( – λ)‖Sn,mxn – Sn,mf ‖
=

∥∥λx + ( – λ)y
∥∥

≤ λ( – λ)(r + d)
[
 – λ( – λ)δ

(
ε

λ( – λ)(r + d)

)]

≤ λ( – λ)(r + d)
[
 – λ( – λ)δ

(
ε

r + d

)]
,

and then by (.), (.) and (.), we have

r – d ≤ ‖xn+m – f ‖ – ‖Sn,mf – f ‖
≤ ‖Sn,mxn – f ‖ – ‖Sn,mf – f ‖
≤ ‖Sn,mxn – Sn,mf ‖

≤ (r + d)
[
 – λ( – λ)δ

(
ε

r + d

)]
.

This contradicts (.). Thus we can conclude that for all n > n, (.) holds. Hence, for
all n > n,

∥∥λxn+m + ( – λ)f – g
∥∥

=
∥∥λSn,mxn + ( – λ)f – g

∥∥
≤ ∥∥[

λSn,mxn + ( – λ)Sn,mf
]
– Sn,m

[
λxn + ( – λ)f

]∥∥ + ( – λ)‖Sn,mf – f ‖
+

∥∥Sn,m[
λxn + ( – λ)f

]
– Sn,mg

∥∥ + ‖Sn,mg – g‖
≤ ε + ‖Sn,mf – f ‖ + ∥∥λxn + ( – λ)f – g

∥∥ + ‖Sn,mg – g‖.
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For any fixed n > n, we can take the limsup form and obtain

lim sup
m→+∞

∥∥λxm + ( – λ)f – g
∥∥

≤ ∥∥λxn + ( – λ)f – g
∥∥ + ε + lim sup

m→+∞
‖Sn,mf – f ‖ + lim sup

m→+∞
‖Sn,mg – g‖.

Hence we have

lim sup
m→+∞

∥∥λxm + ( – λ)f – g
∥∥ ≤ lim inf

n→+∞
∥∥λxn + ( – λ)f – g

∥∥ + ε.

Since ε >  is arbitrary, this implies that

h(λ) = lim
n→+∞

∥∥λxn + ( – λ)f – g
∥∥

exists. This completes the proof. �

Remark . If the mappings T,T, . . . ,TN are asymptotically nonexpansive, we can use
Bruck’s lemma [] to prove Lemma .. While Bruck’s lemma is not valid for non-
Lipschitzian mappings, we must introduce some new techniques to establish a similar
inequality. As we haven seen, we use mainly the technique of the modulus of convexity
and our proof is straightforward.

Now we can prove the weak convergence theorem of the iterative scheme (.).

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which satisfies Opial’s condition or whose dual X∗ has the Kadec-Klee property.
Let P : X → C be a nonexpansive retraction from X onto C. Let T,T, . . . ,TN : C → X be
a finite family of nonself mappings which are asymptotically nonexpansive in the interme-
diate sense with

⋂N
i= F(Ti) 
= ∅ and the sequences {rn} ⊂ [, +∞) satisfying

∑+∞
n= rn < +∞.

Let {xn} be defined by

x ∈ C;

xn+ = P
[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
;

y(N–)
n = P

[
α()
n xn + β ()

n T(PT)n–y(N–)
n + γ ()

n u()n
]
;

· · ·
y()n = P

[
α(N–)
n xn + β (N–)

n TN–(PTN–)n–y()n + γ (N–)
n u(N–)

n
]
;

y()n = P
[
α(N)
n xn + β (N)

n TN (PTN )n–xn + γ (N)
n u(N)

n
]
,

where {α(i)
n }, {β (i)

n }, {γ (i)
n } are in [, ] with  < p ≤ α

(i)
n ,β (i)

n ≤ q < , α
(i)
n + β

(i)
n + γ

(i)
n = ,∑+∞

n= γ
(i)
n < +∞ and {u(i)n } are bounded sequences in X, i = , , . . . ,N . Then {xn} converges

weakly to a common fixed point of {Ti}Ni=.

Proof It suffices to prove that the set ωω({xn}) is a singleton. Since X is reflexive and {xn} is
bounded, we obtain ωω({xn}) 
= ∅. Assuming that f , g ∈ ωω({xn}), in the following, we need
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to show f = g . First, by Lemma . and Lemma ., we know f , g ∈ ⋂N
i= F(Ti). Second, on

the one hand, ifX∗ has the Kadec-Klee property, then fromLemma . and Lemma ., we
can get f = g . On the other hand, if X satisfies Opial’s condition, we assume that f 
= g and
two subsequences {xni} and {xnj} in {xn} such that xni ⇀ f and xnj ⇀ g . Hence by Opial’s
condition and Lemma ., we get

lim
n→+∞‖xn – f ‖ = lim

i→+∞‖xni – f ‖
< lim

i→+∞‖xni – g‖ = lim
n→+∞‖xn – g‖ = lim

j→+∞‖xnj – g‖

< lim
i→+∞‖xnj – f ‖ = lim

n→+∞‖xn – f ‖.

This contraction implies f = g . This completes the proof. �

Remark . Theorem . generalizes and improves many recent important results. For
instance, if N =  and T : C → X is a uniformly continuous mapping which is asymptot-
ically nonexpansive in the intermediate sense, then we can get Theorem . in []. If
T,T, . . . ,TN : C → X are asymptotically nonexpansive nonself mappings and () γ (i)

n ≡ ,
then we can obtain Theorem . in []; () γ

(i)
n ≡ , Ti : C → C, then we can get Theo-

rem . in []; () Ti : C → C andN ≤ , then we can get Theorem . in [], Theorem .
in [], Theorems .-. in [], Theorem  in [], Theorem . in [], Theorem . in [],
Theorems .-. in [], Theorem . in [] and many others.

If {Ti}Ni= is a family of nonexpansive mappings, we can have the following theorem,
which is an extension of Theorem . in [], Theorem  in [], Theorem . in [], The-
orem . and Theorem . in [], Theorem . and Theorem . in [] and others. The
proof is immediate corollaries of our lemmas and Theorem ..

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X which satisfies Opial’s condition or whose dual X∗ has the Kadec-Klee property.
Let P : X → C be a nonexpansive retraction from X onto C. Let T,T, . . . ,TN : C → X be a
finite family of nonself nonexpansive mappings with

⋂N
i= F(Ti) 
= ∅. Let {xn} be defined by

x ∈ C;

xn+ = P
[
α()
n xn + β ()

n Ty(N–)
n + γ ()

n u()n
]
;

y(N–)
n = P

[
α()
n xn + β ()

n Ty(N–)
n + γ ()

n u()n
]
;

· · ·
y()n = P

[
α(N–)
n xn + β (N–)

n TN–y()n + γ (N–)
n u(N–)

n
]
;

y()n = P
[
α(N)
n xn + β (N)

n TNxn + γ (N)
n u(N)

n
]
,

where {α(i)
n }, {β (i)

n }, {γ (i)
n } are in [, ] with  < p ≤ α

(i)
n ,β (i)

n ≤ q < , α
(i)
n + β

(i)
n + γ

(i)
n = ,∑+∞

n= γ
(i)
n < +∞ and {u(i)n } are bounded sequences in X, i = , , . . . ,N . Then {xn} converges

weakly to a common fixed point of {Ti}Ni=.

Now we can give the strong convergence theorem of the scheme (.).
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Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X and let P : X → C be a nonexpansive retraction from X onto C. Let T,T, . . . ,TN :
C → X be a finite family of nonself mappings which are asymptotically nonexpansive in
the intermediate sense and {xn} be as in Theorem .. Then {xn} converges strongly to a
common fixed point of {Ti}Ni= if and only if

lim
n→+∞d(xn,F) = ,

where F denotes the set of common fixed points of {Ti}Ni=, i.e., F =
⋂N

i= F(Ti).

Proof We only need to show the sufficiency. If limn→+∞ d(xn,F) = , then for any ε > ,
there exists a positive integer n such that for all n≥ n,

d(xn,F) <
ε


and

+∞∑
i=n

wi <
ε


.

Hence, for any n ≥ n, there exists f ∈ F such that ‖xn – f ‖ < ε
 . Therefore, for anym ∈N ,

by (.),

‖xn+m – xn‖
≤ ‖xn+m – f ‖ + ‖xn – f ‖
≤ ‖xn+m– – f ‖ +wn+m– + ‖xn – f ‖
· · ·
≤ ‖xn – f ‖ + (wn + · · · +wn+m– +wn+m–) + ‖xn – f ‖
≤ ε


+

ε


+

ε


= ε,

which implies that {xn} is a Cauchy sequence in C and then it must converge to some
point in C. Set limn→+∞ xn = p, since limn→+∞ d(xn,F) =  and F is closed, we get p ∈ F .
This completes the proof. �

In the following, we shall give a sufficient condition to ensure the strong convergence
of the iterative sequence (.). We need the following notions. Recall that a finite family
of nonself mappings T,T, . . . ,TN : C → X with F =

⋂N
i= F(Ti) 
= ∅ satisfies Condition (C̃)

if there exists a nondecreasing function f : [, +∞) → [, +∞) with f () = , f (r) > , for
r ∈ (, +∞), such that at least one of the {Ti}Ni= satisfies condition (̃I), i.e.,

‖Tix – x‖ ≥ f
(
d(x,F)

)
, ∀x ∈ C,

for at least one Ti,  ≤ i ≤N , where d(x,F) = inf{‖x – p‖ : p ∈ F}.
A mapping T : C → X is said to be demicompact if, for any bounded sequence {xn} in

C such that xn – Txn converges, there exists a subsequence, say {xnj} of {xn}, such that
{xnj} converges strongly to some point in C. T is said to be completely continuous if it is
continuous and for every bounded sequence {xn}, there exists a subsequence, say {xnj} of
{xn}, such that the sequence Txnj converges to some element of the range of T .
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It is well known that every continuous and demicompact mapping must satisfy condi-
tion (̃I) since every completely continuous mapping T : C → C is continuous and demi-
compact so that it satisfies condition (̃I). Therefore, the condition (̃I) is weaker than the
demicompactness and complete continuity (see []). Next we shall give several strong
convergence theorems in uniformly convex Banach spaces if one member of the finite
family of asymptotically nonexpansive in the intermediate sense mappings {Ti}Ni= satisfies
condition (̃I).

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X and let P : X → C be a nonexpansive retraction from X onto C. Let T,T, . . . ,TN :
C → X be a finite family of uniformly continuous nonself mappings which are asymptoti-
cally nonexpansive in the intermediate sense and let {xn} be as in Theorem .. If the family
{T,T, . . . ,TN } satisfies condition (C̃), then {xn} converges strongly to a common fixed point
of {Ti}Ni=.

Proof Without loss of generality, we assume that T satisfies condition (̃I), i.e.,

‖Tx – x‖ ≥ f
(
d(x,F)

)
, ∀x ∈ C.

Hence we have

‖Txn – xn‖ ≥ f
(
d(xn,F)

)
, n = , , . . . . (.)

Then by (.), the uniform continuity of T and

‖xn – Txn‖
≤ ‖xn – xn+‖ +

∥∥xn+ – T(PT)nxn+
∥∥

+
∥∥T(PT)nxn+ – T(PT)nxn

∥∥ +
∥∥T(PT)nxn – Txn

∥∥
≤ ‖xn – xn+‖ +

∥∥xn+ – T(PT)nxn+
∥∥ +

∥∥T(PT)nxn – Txn
∥∥ + rn+,

we derive

lim
n→+∞‖xn – Txn‖ = . (.)

By (.), we have for all f ∈ F , ‖xn+ – f ‖ ≤ ‖xn – f ‖ +wn, where
∑+∞

n= wn < +∞. Hence

d(xn+,F) ≤ d(xn,F) +wn.

Then it follows from Lemma . that limn→+∞ d(xn,F) exists. Hence, by (.) and (.),
we see limn→+∞ f (d(xn,F)) =  and therefore,

lim
n→+∞d(xn,F) = .

By Theorem ., we can get what we desired. This completes the proof. �
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Remark . From Theorem ., we can get Theorem . and Theorem . in [], The-
orem . in [], Theorem  and Theorem  in [].

For completeness, we conclude with the following strong convergence theorem for a
finite family of nonexpansive and asymptotically nonexpansive nonself mappings.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X and let P : X → C be a nonexpansive retraction from X onto C. Let T,T, . . . ,TN :
C → X be a finite family of asymptotically nonexpansive nonself mappings and {xn} be
as in Theorem .. If the family {T,T, . . . ,TN } satisfies condition (C̃), then {xn} converges
strongly to a common fixed point of {Ti}Ni=.

Theorem . Let C be a nonempty closed convex subset of a uniformly convex Banach
space X and let P : X → C be a nonexpansive retraction from X onto C. Let T,T, . . . ,TN :
C → X be a finite family of nonexpansive nonselfmappings and {xn} be as in Theorem .. If
the family {T,T, . . . ,TN } satisfies condition (C̃), then {xn} converges strongly to a common
fixed point of {Ti}Ni=.

Remark . Theorem . and Theorem . generalize and improve many recent impor-
tant results such as Theorem . in [], Theorem . in [], Theorem . in [], Theo-
rem . in [], Theorem  in [], Theorem . in [], Theorems .-. in [], The-
orem . in [], Theorem . and Theorem . in [], Theorems .-. in [] and
others.
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