6,342 research outputs found

    Fully Quaternion-Valued Adaptive Beamforming Based on Crossed-Dipole Arrays

    Get PDF
    Based on crossed-dipole antenna arrays, quaternion-valued data models have been developed for both direction of arrival estimation and beamforming in the past. However, for almost all the models, and especially for adaptive beamforming, the desired signal is still complex-valued as in the quaternion-valued Capon beamformer. Since the complex-valued desired signal only has two components, while there are four components in a quaternion, only two components of the quaternion-valued beamformer output are used and the remaining two are simply discarded, leading to significant redundancy in its implementation. In this work, we consider a quaternion-valued desired signal and develop a fully quaternion-valued Capon beamformer which has a better performance and a much lower complexity. Furthermore, based on this full quaternion model, the robust beamforming problem is also studied in the presence of steering vector errors and a worst-case-based robust beamformer is developed. The performance of the proposed methods is verified by computer simulations

    Direction finding for a mixture of single-transmission and dual-transmission signals

    Get PDF
    Currently, most of existing research in direction of arrival (DOA) estimation is focused on single signal transmission (SST) based signal. However, to make full use of the degree of freedom provided by the system in the polarisation domain, the dual signal transmission (DST) model has been adopted more and more widely in wireless communications. In this work, a DOA estimation method for a mixture of SST and DST signals (referred to as the mixed signal transmission (MST) model) is proposed. To our best knowledge, this is the first time to study the DOA estimation problem for such an MST model. There are two steps in the proposed method, which deals with the two kinds of signals separately. The performance of the proposed method is compared with the Cramér-Rao Bound (CRB) based on computer simulations

    Quantum dense coding in multiparticle entangled states via local measurements

    Full text link
    In this paper, we study quantum dense coding between two arbitrarily fixed particles in a (N+2)-particle maximally-entangled states through introducing an auxiliary qubit and carrying out local measurements. It is shown that the transmitted classical information amount through such an entangled quantum channel usually is less than two classical bits. However, the information amount may reach two classical bits of information, and the classical information capacity is independent of the number of the entangled particles in the initial entangled state under certain conditions. The results offer deeper insights to quantum dense coding via quantum channels of multi-particle entangled states.Comment: 3 pages, no figur

    The Cyclogenesis and Decay of Typhoon Damrey

    Get PDF
    The cyclogenesis of typhoons has been a continuing challenge in dynamic meteorology. In this study, we use a recently developed methodology, namely, multiscale window transform (MWT), together with the MWT-based localized multiscale energy and vorticity analysis and the theory of canonical transfer, to investigate the formation, maintenance, and decay of the typhoon Damrey, a rarely seen tropical storm of higher-latitude origin. The atmospheric fields are first reconstructed onto three scale subspaces or scale windows: large-scale window, tropical cyclone-scale window, and cumulus convection-scale window. On the cyclone-scale window, Damrey is found right along the edge of the subtropical high. It is generated due to a strong barotropic instability in the lower troposphere, but its subsequent rapid amplification is, however, related to a baroclinic instability in the upper troposphere. Damrey begins to decay before landfall, right over East China Sea at the mouth of Yangtze River, where a strong inverse cascade center resides and transfers the cyclone-scale energy backward to the large-scale window

    Directional modulation design based on crossed-dipole arrays for two signals with orthogonal polarisations

    Get PDF
    Directional modulation (DM) is a physical layer security technique based on antenna arrays and so far the polarisation information has not been considered in its designs. To increase the channel capacity, we consider exploiting the polarisation information and send two different signals simultaneously at the same direction, same frequency, but with different polarisations. These two signals can also be considered as one composite signal using the four dimensional (4-D) modulation scheme across the two polarisation diversity channels. In this paper, based on cross-dipole arrays, we formulate the design to find a set of common weight coefficients to achieve directional modulation for such a composite signal and examples are provided to verify the effectiveness of the proposed method
    • …
    corecore