4 research outputs found

    The Effects of Seaport-Inland Port Dyads on Container Seaport Hinterland Delimitation

    Get PDF
    The emerging seaport-inland port dyad contributes greatly to the development of seaport hinterlands. However, little research has examined its influence on container hinterland delimitation. This paper used an improved radiation model to study the effects of seaport-inland port dyads on the container seaport hinterland delimitation in the context of a Chinese multi-port system. The radiation of each seaport was estimated to track changes in the seaport superior hinterlands and hinterland ratings and discover the patterns of the effects. The results show that the formation of dyads expands the scope of superior hinterlands and improves the hinterland ratings of seaports. The provinces close to inland ports and far from seaports were significantly affected and the same inland port influenced seaports differently. These results demonstrate that establishing a seaport-inland port dyad is a good way to compete with other seaports for larger market shares. These different effects can serve as a guideline for seaport authorities to choose suitable dyads to achieve their hinterland targets

    Role of Pericytes in Cardiomyopathy-Associated Myocardial Infarction Revealed by Multiple Single-Cell Sequencing Analysis

    No full text
    Acute myocardial infarction (AMI) is one of the leading causes of cardiovascular death worldwide. AMI with cardiomyopathy is accompanied by a poor long-term prognosis. However, limited studies have focused on the mechanism of cardiomyopathy associated with AMI. Pericytes are important to the microvascular function in the heart, yet little attention has been paid to their function in myocardial infarction until now. In this study, we integrated single-cell data from individuals with cardiomyopathy and myocardial infarction (MI) GWAS data to reveal the potential function of pericytes in cardiomyopathy-associated MI. We found that pericytes were concentrated in the left atrium and left ventricle tissues. DLC1/GUCY1A2/EGFLAM were the top three uniquely expressed genes in pericytes (p p p COL4A2/COL4A1/SMAD3 were the hub genes in pericyte function involved in cardiomyopathy and AMI. In conclusion, this study provides new evidence about the importance of pericytes in the pathogenesis of cardiomyopathy-associated MI. DLC1/GUCY1A2/EGFLAM were highly expressed in pericytes. The hub genes COL4A2/COL4A1/SMAD3 may be potential research targets for cardiomyopathy-associated MI
    corecore