29 research outputs found

    The fodder legume Chamaecytisus albidus establishes functional symbiosis with different Bradyrhizobial symbiovars in Morocco

    Get PDF
    In this work, we analyzed the symbiotic performance and diversity of rhizobial strains isolated from the endemic shrubby legume Chamaecytisus albidus grown in soils of three different agroforestry ecosystems representing arid and semi-arid forest areas in Morocco. The analysis of the rrs gene sequences from twenty-four representative strains selected after REP-PCR fingerprinting showed that all the strains belong to the genus Bradyrhizobium. Following multi-locus sequence analysis (MLSA) using the rrs, gyrB, recA, glnII, and rpoB housekeeping genes, five representative strains, CA20, CA61, CJ2, CB10, and CB61 were selected for further molecular studies. Phylogenetic analysis of the concatenated glnII, gyrB, recA, and rpoB genes showed that the strain CJ2 isolated from Sahel Doukkala soil is close to Bradyrhizobium canariense BTA-1 (96.95%); that strains CA20 and CA61 isolated from the Amhach site are more related to Bradyrhizobium valentinum LmjM3, with 96.40 and 94.57% similarity values; and that the strains CB10 and CB60 isolated from soil in the Bounaga site are more related to Bradyrhizobium murdochi CNPSo 4020 and Bradyrhizobium. retamae Ro19, with which they showed 95.45 and 97.34% similarity values, respectively. The phylogenetic analysis of the symbiotic genes showed that the strains belong to symbiovars lupini, genistearum, and retamae. All the five strains are able to nodulate Lupinus luteus, Retama monosperma, and Cytisus monspessilanus, but they do not nodulate Glycine max and Phaseolus vulgaris. The inoculation tests showed that the strains isolated from the 3 regions improve significantly the plant yield as compared to uninoculated plants. However, the strains of Bradyrhizobium sp. sv. retamae isolated from the site of Amhach were the most performing. The phenotypic analysis showed that the strains are able to use a wide range of carbohydrates and amino acids as sole carbon and nitrogen source. The strains isolated from the arid areas of Bounaga and Amhach were more tolerant to salinity and drought stress than strains isolated in the semi-arid area of Sahel Doukkala.Financial support was obtained from Académie Hassan II des Sciences et Techniques (in Morocco). Mr Omar Bouhnik received a grant from the Hassan II Academy of Science and Technolog

    Characterization of Pisum sativum and Vicia faba microsymbionts in Morocco and definition of symbiovar viciae in Rhizobium acidisoli

    No full text
    In this work, we analyzed the diversity of seventy-six bacteria isolated from Pea and faba bean nodules in two regions of Morocco. The molecular diversity was realized using the analysis of the sequences of 16S rRNA and six housekeeping genes (recA, glnII, atpD, dnaK, rpoB and gyrB) and two symbiotic genes (nodA and nodC). The phylogeny of the 16S rRNA gene sequences revealed that all strains belong to the genus Rhizobium, being related to the type strains of R. leguminosarum, R. laguerreae, R. indigoferae, R. anhuiense and R. acidisoli. The housekeeping genes phylogenies showed that some strains formed a subclade distinct from the rhizobial species that usually nodulate Vicia faba and Pisum sativum which are closely related to R. acidisoli FH23 with sequence similarity of 98.3%. Analysis of the PGPR activities of the different isolates showed that the strains related to R. laguerreae were able to solubilize phosphates and to produce siderophores and auxin phytohormone. However, R. acidisoli strain F40D2 was unable to solubilize phosphates although they produce siderophores and IAA. The phylogenetic analysis of the nodA and nodC sequences showed that all isolated strains were closely related with the strains of symbiovar viciae. The nodulation tests confirmed the ability to nodulate V. faba and P. sativum but not Cicer arietinum or Phaseolus vulgaris. Hence, in Morocco P. sativum is nodulated by R. laguerreae; whereas V. faba is nodulated by R. laguerreae and the symbiovar viciae of R. acidisoli which has been not previously described in this species.The authors want to thank all the persons that made it possible to achieve this work

    Characterization of Retama sphaerocarpa microsymbionts in Zaida lead mine tailings in the Moroccan middle Atlas

    No full text
    In the Moroccan Middle Atlas, the tailings rich in lead and other metal residues, in the abandoned Zaida mining district, represent a real threat to environment and the neighboring villages’ inhabitants’ health. In this semi-arid to arid area, phytostabilisation would be the best choice to limit the transfer of heavy metals to populations and groundwater. The aim of this work was to characterize the bacteria that nodulate Retama sphaerocarpa, spontaneous nitrogen fixing shrubby legume, native to the Zaida mining area, with great potential to develop for phytostabilisation. Forty-three bacteria isolated from root nodules of the plant were characterized. Based on REP-PCR and ARDRA, four strains were selected for further molecular analyzes. The 16S rRNA gene sequences analysis revealed that the isolated strains are members of the genus Bradyrhizobium, and the phylogenetic analysis of the housekeeping genes glnII, atpD, gyrB, rpoB, recA and dnaK individual sequences and their concatenation showed that the strains are close to B. algeriense RST89 and B. valentinum LmjM3 with similarity percentages of 89.07% to 95.66% which suggest that the newly isolated strains from this mining site may belong to a potential novel species. The phylogeny of the nodA and nodC genes showed that the strains belong to the symbiovar retamae of the genus Bradyrhizobium. These strains nodulate also R. monosperma, R. dasycarpa and Lupinus luteus.The authors want to thank the Hassan II Academy of Sciences for funding this research in the frame of the BIOMICS project, as well as the ministry of National Education, Vocational training, Higher Education and Scientific Research in the frame of PPR2-BIOMIVER project. Financial support was also obtained from the ERDF-cofinanced project AGL2017–85676R from Ministerio de Economía, Industria y Competitividad (Spain)

    Membrane-bound oxygen reductases of the anaerobic sulfate-reducing Desulfovibrio vulgaris Hildenborough: roles in oxygen defense and electron link with the periplasmic hydrogen oxidation.

    No full text
    International audience: Cytoplasmic membranes of the strictly anaerobic sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough contain two terminal oxygen reductases, a bd quinol oxidase and a cc(b/o)o3 cytochrome oxidase (cox). Viability assays pointed out that single Δbd, Δcox and double ΔbdΔcox deletion mutant strains were more sensitive to oxygen exposure than the wild type strain, showing the involvement of these oxygen reductases in the detoxification of oxygen. The Δcox strain was slightly more sensitive than the Δbd strain, pointing to the importance of the cc(b/o)o3 cytochrome oxidase in oxygen protection. Decreased O2 reduction rates were measured in mutant cells and membranes using lactate, NADH, ubiquinol and menadiol as substrates. The affinity for oxygen measured with the bd quinol oxydase (Km=300 nM) was higher than that of the cc(b/o)o3 cytochrome oxidase (Km=620 nM). The total membrane activity of the bd quinol oxidase was higher than that of the cytochrome oxidase activity in line with the higher expression of the bd oxidase genes. In addition, analysis of the ΔbdΔcox mutant strain indicated the presence of at least one O2 scavenging membrane-bound system able to reduce O2 with menaquinol as electron donor with an O2 affinity that was two orders of magnitude lower than that of the bd quinol oxidase. The lower O2 reductase activity in mutant cells with hydrogen as electron donor and the use of specific inhibitors indicated an electron transfer link between periplasmic H2 oxidation and membrane-bound oxygen reduction via the menaquinol pool. This linkage is crucial in defense of the strictly anaerobic bacterium Desulfovibrio against an oxygen stress
    corecore