78 research outputs found

    A compact high-flux source of cold sodium atoms

    Full text link
    We present a compact source of cold sodium atoms suitable for the production of quantum degenerate gases and versatile for a multi-species experiment. The magnetic field produced by permanent magnets allows to simultaneously realize a Zeeman slower and a two-dimensional MOT within an order of magnitude smaller length than standard sodium sources. We achieve an atomic flux exceeding 4x10^9 atoms/s loaded in a MOT, with a most probable longitudinal velocity of 20 m/s, and a brightness larger than 2.5x10^(12) atoms/s/sr. This atomic source allowed us to produce a pure BEC with more than 10^7 atoms and a background pressure limited lifetime of 5 minutes.Comment: 8 pages, 6 figures, submitted to Phys. Rev.

    Determination of the Newtonian Gravitational Constant Using Atom Interferometry

    Full text link
    We present a new measurement of the Newtonian gravitational constant G based on cold atom interferometry. Freely falling samples of laser-cooled rubidium atoms are used in a gravity gradiometer to probe the field generated by nearby source masses. In addition to its potential sensitivity, this method is intriguing as gravity is explored by a quantum system. We report a value of G=6.667 10^{-11} m^{3} kg^{-1} s^{-2}, estimating a statistical uncertainty of ±\pm 0.011 10^{-11} m^{3} kg^{-1} s^{-2} and a systematic uncertainty of ±\pm 0.003 10^{-11} m^{3} kg^{-1} s^{-2}. The long-term stability of the instrument and the signal-to-noise ratio demonstrated here open interesting perspectives for pushing the measurement accuracy below the 100 ppm level.Comment: 4 figure

    Dynamical Equilibration Across a Quenched Phase Transition in a Trapped Quantum Gas

    Full text link
    The formation of an equilibrium quantum state from an uncorrelated thermal one through the dynamical crossing of a phase transition is a central question of non-equilibrium many-body physics. During such crossing, the system breaks its symmetry by establishing numerous uncorrelated regions separated by spontaneously-generated defects, whose emergence obeys a universal scaling law with the quench duration. Much less is known about the ensuing re-equilibrating or "coarse-graining" stage, which is governed by the evolution and interactions of such defects under system-specific and external constraints. In this work we perform a detailed numerical characterization of the entire non-equilibrium process, addressing subtle issues in condensate growth dynamics and demonstrating the quench-induced decoupling of number and coherence growth during the re-equilibration process. Our unique visualizations not only reproduce experimental measurements in the relevant regimes, but also provide valuable information in currently experimentally-inaccessible regimes.Comment: Supplementary Movie Previes: SM-Movie-1: https://youtu.be/3q7-CvuBylg SM-Movie-2: https://youtu.be/-Gymaiv9rC0 SM-Movie-3: https://youtu.be/w-O2SPiw3nE SM-Movie-4: https://youtu.be/P4xGyr4dwK

    Observation of a Spinning Top in a Bose-Einstein Condensate

    Get PDF
    Boundaries strongly affect the behavior of quantized vortices in Bose-Einstein condensates, a phenomenon particularly evident in elongated cigar-shaped traps where vortices tend to orient along a short direction to minimize energy. Remarkably, contributions to the angular momentum of these vortices are tightly confined to the region surrounding the core, in stark contrast to untrapped condensates where all atoms contribute ℏ\hbar. We develop a theoretical model and use this, in combination with numerical simulations, to show that such localized vortices precess in an analogous manner to that of a classical spinning top. We experimentally verify this spinning-top behavior with our real-time imaging technique that allows for the tracking of position and orientation of vortices as they dynamically evolve. Finally, we perform an in-depth numerical investigation of our real-time expansion and imaging method, with the aim of guiding future experimental implementation, as well as outlining directions for its improvement.Comment: 10 pages, 7 figure

    Confinement-Induced Resonances in Low-Dimensional Quantum Systems

    Full text link
    We report on the observation of confinement-induced resonances in strongly interacting quantum-gas systems with tunable interactions for one- and two-dimensional geometry. Atom-atom scattering is substantially modified when the s-wave scattering length approaches the length scale associated with the tight transversal confinement, leading to characteristic loss and heating signatures. Upon introducing an anisotropy for the transversal confinement we observe a splitting of the confinement-induced resonance. With increasing anisotropy additional resonances appear. In the limit of a two-dimensional system we find that one resonance persists.Comment: 4 pages, 4 figure

    Observation of the Presuperfluid Regime in a Two-Dimensional Bose Gas

    Get PDF
    In complementary images of coordinate-space and momentum-space density in a trapped 2D Bose gas, we observe the emergence of pre-superfluid behavior. As phase-space density ρ\rho increases toward degenerate values, we observe a gradual divergence of the compressibility Îș\kappa from the value predicted by a bare-atom model, Îșba\kappa_{ba}. Îș/Îșba\kappa/\kappa_{ba} grows to 1.7 before ρ\rho reaches the value for which we observe the sudden emergence of a spike at p=0p=0 in momentum space. Momentum-space images are acquired by means of a 2D focusing technique. Our data represent the first observation of non-meanfield physics in the pre-superfluid but degenerate 2D Bose gas.Comment: Replace with the version appeared in PR

    Atom interferometry gravity-gradiometer for the determination of the Newtonian gravitational constant G

    Get PDF
    We developed a gravity-gradiometer based on atom interferometry for the determination of the Newtonian gravitational constant \textit{G}. The apparatus, combining a Rb fountain, Raman interferometry and a juggling scheme for fast launch of two atomic clouds, was specifically designed to reduce possible systematic effects. We present instrument performances and show that the sensor is able to detect the gravitational field induced by source masses. A discussion of projected accuracy for \textit{G} measurement using this new scheme shows that the results of the experiment will be significant to discriminate between previous inconsistent values.Comment: 9 pages,9 figures, Submitte
    • 

    corecore