112 research outputs found

    Optoelectronic comb generation and cross-injection locking of photonic integrated circuit for millimetre-wave generation

    Get PDF
    We demonstrate how a monolithically integrated heterodyne source was used for a 33.6 GHz signal generation using an optical solution by a combination of cross-optical injection locking inside the chip and electrical injection locking at the RF signal 7th sub-harmonic

    Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser

    Get PDF
    A heterogeneously integrated III-V-on-silicon laser is reported, integrating a III-V gain section, a silicon ring resonator for wavelength selection and two silicon Bragg grating reflectors as back and front mirrors. Single wavelength operation with a side mode suppression ratio higher than 45 dB is obtained. An output power up to 10 mW at 20 °C and a thermo-optic wavelength tuning range of 8 nm are achieved. The laser linewidth is found to be 1.7 MHz

    Low-threshold heterogeneously integrated InP/SOI lasers with a double adiabatic taper coupler

    Get PDF
    We report on a heterogeneously integrated InP/silicon-on-insulator (SOI) laser source realized through divinylsiloxane-bis-benzocyclobutene (DVS-BCB) wafer bonding. The hybrid lasers present several new features. The III-V waveguide has a width of only 1.7 mu m, reducing the power consumption of the device. The silicon waveguide thickness is 400 nm, compatible with high-performance modulator designs and allowing efficient coupling to a standard 220-nm high index contrast silicon waveguide layer. In order to make the mode coupling efficient, both the III-V waveguide and silicon waveguide are tapered, with a tip width for the III-V waveguide of around 800 nm. These new features lead to good laser performance: a lasing threshold as low as 30 mA and an output power of more than 4 mW at room temperature in continuous-wave operation regime. Continuous wave lasing up to 70 degrees C is obtained

    Cu(II) and Zn(II) complexes with hyaluronic acid and its sulphated derivative.Effect on the motility of vascular endothelial cells.

    Get PDF
    With the aim of improving the compatibility of biomaterials to be used for the construction of cardiovascular prosthesis, we have designed bioactive macromolecules resulting from chemical modifications of hyaluronic acid (Hyal). The stability constants of Cu(II) and Zn(II) complexes with the sulphated derivative of hyaluronic acid (HyalS3.5) were evaluated. Two different complexes have been found for each metal ion, CuL, Cu(OH)2L and ZnL, Zn(OH)2L (L means the disaccharide unit of the ligands) in aqueous solution at 37 degrees C. The dihydroxo Cu(II) complex was present in high percentage at pH=7.4. On the contrary, the Zn(II) ion was present with a relatively low percentage of both complexes. The ability to stimulate endothelial cell adhesion and migration was evaluated for Hyal, HyalS3.5 and their complexes with Cu(II) and Zn(II) ions. The results revealed that Hyal and [Cu(OH)2HyalS3.5](4.5)- induced cell adhesion, while [ZnHyalS3.5](2.5)- and [Zn(OH)2HyalS3.5](4.5)- inhibited the process. The chemotactic activity of increasing concentrations of the above complexes was also evaluated, demonstrating that [Cu(OH)2HyalS3.5](4.5)- complex at 1 microM concentration was the most active in inducing cell migration. These results have been also strengthened by analysing adherent cell migration in agarose. In conclusion, sulphated hyaluronic acid coordinated to Cu(II) seems to be a promising matrix molecule for the construction of cardiovascular prosthesis.

    Laser sources on a heterogeneous III-V/silicon platform

    Get PDF
    The heterogeneous integration of III-V semiconductor lasers on a silicon waveguide platform using DVS-BCB adhesive bonding is reviewed. Both mW-level lasers and ultra-compact laser sources are discussed

    Demonstration of Photonic Integrated RAU for Millimetre-wave Gigabit Wireless Transmission

    Get PDF
    This work reports the performance of a wireless transmission link based on a radio access unit (RAU) implemented in photonic integrated circuit (PIC) form. The PIC contains a high speed photodiode for direct optical to RF conversion, monolithically integrated with a semiconductor laser, used as an optical local oscillator for up-conversion of the incoming 16-QAM-OFDM signal through heterodyning. Wireless transmission was demonstrated with a spectral efficiency as high as 3 bits/s/Hz at 60 GHz carrier and with 1.2 Gb/s transmission rate. Moreover, the RAU based on a broad bandwidth photodiode integrated with a tuneable laser allowed for a compact unit that could operate at carrier frequencies up to 100 GHz

    Photonic integrated circuit on InP for millimeter wave generation

    Get PDF
    Indium phosphide and associated epitaxially grown alloys is a material system of choice to make photonic integrated circuits for microwave to terahertz signal generation, processing and detection. Fabrication of laser emitters, high speed electro-optical modulators, passive waveguides and couplers, optical filters and high speed photodetectors is well mastered for discrete devices. But monolithic integration of them while maintaining good performances is a big challenge. We have demonstrated a fully integrated tunable heterodyne source designed for the generation and modulation of sub-Terahertz signals. This device is to be used for high data-rate wireless transmissions. DFB lasers, SOA amplifiers, passive waveguides, beam combiners, electro-optic modulators and high speed photodetectors have been integrated on the same InP-based platform. Millimeter wave generation at up to 120 GHz based on heterodyning the optical tones from two integrated lasers in an also integrated high bandwidth photodetector has been obtained. © 2014 SPIE
    corecore