16 research outputs found

    KIC 9533489: a genuine γ Doradus – δ Scuti Kepler hybrid pulsator with transit events

    Get PDF
    Context Several hundred candidate hybrid pulsators of type A–F have been identified from space-based observations. Their large number allows both statistical analyses and detailed investigations of individual stars. This offers the opportunity to study the full interior of the genuine hybrids, in which both low-radial-order p- and high-order g-modes are self-excited at the same time. However, a few other physical processes can also be responsible for the observed hybrid nature, related to binarity or to surface inhomogeneities. The finding that most δ Scuti stars also show long-period light variations represents a real challenge for theory. Aims We aim at determining the pulsation frequencies of KIC 9533489, to search for regular patterns and spacings among them, and to investigate the stability of the frequencies and the amplitudes. An additional goal is to study the serendipitously detected transit events: is KIC 9533489 the host star? What are the limitations on the physical parameters of the involved bodies? Methods Fourier analysis of all the available Kepler light curves. Investigation of the frequency and period spacings. Determination of the stellar physical parameters from spectroscopic observations. Modelling of the transit events. Results The Fourier analysis of the Kepler light curves revealed 55 significant frequencies clustered into two groups, which are separated by a gap between 15 and 27 d −1. The light variations are dominated by the beating of two dominant frequencies located at around 4 d −1 . The amplitudes of these two frequencies show a monotonic long-term trend. The frequency spacing analysis revealed two possibilities: the pulsator is either a highly inclined moderate rotator (v ≈ 70 km s −1 , i > 70 ◦ ) or a fast rotator (v ≈ 200 km s −1 ) with i ≈ 20 ◦ . The transit analysis disclosed that the transit events, which occur with a ≈ 197 d period may be caused by a 1.6 R_Jup body orbiting a fainter star, which would be spatially coincident with KIC 9533489

    Investigation of the binary fraction among candidate A-F type hybrid stars detected by Kepler

    Get PDF
    We are currently monitoring up to 40 Kepler candidate δ Scuti-γ Doradus (resp. γ Doradus-δ Scuti) hybrid stars in radial velocity in order to identify the physical cause behind the low frequencies observed in the periodograms based on the ultra-high accuracy Kepler space photometry. The presence of low frequency variability in unevolved or slightly evolved oscillating A/F-type stars can generally be explained in three ways: either 1) the star is an (un)detected binary or multiple system, or 2) the star is a g-mode pulsator (i.e. a genuine hybrid), or 3) the star's atmosphere displays an asymmetric intensity distribution (caused by spots, i.e. chemical anomalies, or by (very) high rotation), which is detected through rotational modulation. Our targets were selected from the globally characterized variable A/F-type stars of the Kepler mission [7]. We observe each star at least 4 times unevenly spread over a time lapse up to 2 months with the HERMES spectrograph [6]. In the case of composite, multiple-lined spectra, these observations also provide the atmospheric properties of each component. Our principal goal is to estimate the fraction of short-period, spectroscopic systems in the sample

    Puzzling Low-Frequency Variations in the δ Scuti-type Kepler Star KIC 5988140 (HD 188774)

    Get PDF
    At first sight, the Kepler data of the A-type star KIC 5988140 mimics the light curve of an eclipsing binary system with a superposed short-period variability of type δ Scuti. It was attributed by the Kepler Asteroseismology Consortium (KASC) to the working group “Binary and Multiple Stars”, where we picked it up. We used the high-quality space photometry supplemented by recent high-resolution spectra to investigate the cause of the variability of this late A-type object. We considered three different possible scenarios: (1) binarity, (2) co-existence of γ Doradus and delta Scuti pulsations (the hybrid case) and (3) rotation of the stellar surface with an asymmetric intensity distribution (i.e. rotational modulation). We confirm the presence of various pressure modes of type delta Scuti. However, none of the previous scenarios is capable of reproducing all of the observed characteristics of the variations. Thus, the cause of the remaining light and radial velocity variations remains presently unexplained by any of the considered physical processes

    Multi-technique investigation of the binary fraction among A-F type candidate hybrid variable stars discovered by Kepler

    Get PDF
    Hundreds of candidate hybrid pulsators of intermediate type A-F were revealed by the recent space missions. Hybrid pulsators allow to study the full stellar interiors, where p- and g-modes are simultaneously excited. The true hybrid stars must be identified since other processes, due to stellar multiplicity or rotation, might explain the presence of (some) low frequencies observed in their periodograms. We measured the radial velocities of 50 candidate Delta Sct - Gamma Dor hybrid stars from the Kepler mission with the Hermes/Ace spectrographs over a span of months to years. We aim to derive the fraction of binary and multiple systems and to provide an independent and homogeneous determination of the atmospheric properties and vsini for all targets. The objective is to identify the physical cause of the low frequencies. We computed 1-D cross-correlation functions (CCFs) in order to find the best parameters in terms of the number of components, spectral type and vsini for each target. Radial velocities were measured from spectrum synthesis and by using a 2-D cross-correlation technique in the case of double- and triple-lined systems. Fundamental parameters were determined by fitting (composite) synthetic spectra to the normalised median spectra corrected for the appropriate Doppler shifts. We report on the analysis of 478 high-resolution Hermes and 41 Ace spectra of A/F-type candidate hybrid pulsators from the Kepler field. We determined their radial velocities, projected rotational velocities, atmospheric properties and classified our targets based on the shape of the CCFs and the temporal behaviour of the radial velocities. We derived orbital solutions for seven new systems. Three long-period preliminary orbital solutions are confirmed by a photometric time-delay analysis. Finally, we determined a global multiplicity fraction of 27% in our sample of candidate hybrid stars

    Extensive study of HD 25558, a long-period double-lined binary with two SPB components

    Get PDF
    We carried out an extensive observational study of the Slowly Pulsating B (SPB) star, HD 25558. The ≈2000 spectra obtained at different observatories, the ground-based and MOST satellite light curves revealed that this object is a double-lined spectroscopic binary with an orbital period of about nine years. The observations do not allow the inference of an orbital solution. We determined the physical parameters of the components, and found that both lie within the SPB instability strip. Accordingly, both show line-profile variations due to stellar pulsations. 11 independent frequencies were identified in the data. All the frequencies were attributed to one of the two components based on pixel-by-pixel variability analysis of the line profiles. Spectroscopic and photometric mode identification was also performed for the frequencies of both stars. These results suggest that the inclination and rotation of the two components are rather different. The primary is a slow rotator with ≈6 d period, seen at ≈60° inclination, while the secondary rotates fast with ≈1.2 d period, and is seen at ≈20° inclination. Spectropolarimetric measurements revealed that the secondary component has a magnetic field with at least a few hundred Gauss strength, while no magnetic field can be detected in the primary

    The discovery of a planetary candidate around the evolved low-mass Kepler giant star HD 175370

    Get PDF
    We report on the discovery of a planetary companion candidate with a minimum mass M sin i = 4.6 ± 1.0 MJupiter orbiting the K2 III giant star HD 175370 (KIC 007940959). This star was a target in our program to search for planets around a sample of 95 giant stars observed with Kepler. This detection was made possible using precise stellar radial velocity measurements of HD 175370 taken over five years and four months using the coudé echelle spectrograph of the 2-m Alfred Jensch Telescope and the fibre-fed echelle spectrograph HERMES of the 1.2-m Mercator Telescope. Our radial velocity measurements reveal a periodic (349.5 ± 4.5 days) variation with a semi-amplitude K = 133 ± 25 ms-1, superimposed on a long-term trend. A low-mass stellar companion with an orbital period of ˜88 years in a highly eccentric orbit and a planet in a Keplerian orbit with an eccentricity e = 0.22 are the most plausible explanation of the radial velocity variations. However, we cannot exclude the existence of stellar envelope pulsations as a cause for the low-amplitude radial velocity variations and only future continued monitoring of this system may answer this uncertainty. From Kepler photometry we find that HD 175370 is most likely a low-mass red-giant branch or asymptotic-giant branch star

    Eclipsing Systems with Pulsating Components (Types β Cep, δ Sct, γ Dor or Red Giant) in the Era of High-Accuracy Space Data

    No full text
    Eclipsing systems are essential objects for understanding the properties of stars and stellar systems. Eclipsing systems with pulsating components are furthermore advantageous because they provide accurate constraints on the component properties, as well as a complementary method for pulsation mode determination, crucial for precise asteroseismology. The outcome of space missions aiming at delivering high-accuracy light curves for many thousands of stars in search of planetary systems has also generated new insights in the field of variable stars and revived the interest of binary systems in general. The detection of eclipsing systems with pulsating components has particularly benefitted from this, and progress in this field is growing fast. In this review, we showcase some of the recent results obtained from studies of eclipsing systems with pulsating components based on data acquired by the space missions Kepler or TESS. We consider different system configurations including semi-detached eclipsing binaries in (near-)circular orbits, a (near-)circular and non-synchronized eclipsing binary with a chemically peculiar component, eclipsing binaries showing the heartbeat phenomenon, as well as detached, eccentric double-lined systems. All display one or more pulsating component(s). Among the great variety of known classes of pulsating stars, we discuss unevolved or slightly evolved pulsators of spectral type B, A or F and red giants with solar-like oscillations. Some systems exhibit additional phenomena such as tidal effects, angular momentum transfer, (occasional) mass transfer between the components and/or magnetic activity. How these phenomena and the orbital changes affect the different types of pulsations excited in one or more components, offers a new window of opportunity to better understand the physics of pulsations

    Space versus ground: A confrontation between Hipparcos and orbital parallaxes

    No full text
    info:eu-repo/semantics/publishe
    corecore