2 research outputs found

    State of wildfires 2023–24

    Get PDF
    Climate change is increasing the frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regional research concentration. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use, and forecast future risks under different climate scenarios. During the 2023–24 fire season, 3.9 million km2 burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totaling 2.4 Pg C. This was driven by record emissions in Canadian boreal forests (over 9 times the average) and dampened by reduced activity in African savannahs. Notable events included record-breaking wildfire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawai’i (100 deaths) and Chile (131 deaths). Over 232,000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece a combination of high fire weather and an abundance of dry fuels increased the probability of fires by 4.5-fold and 1.9–4.1-fold, respectively, whereas fuel load and direct human suppression often modulated areas with anomalous burned area. The fire season in Canada was predictable three months in advance based on the fire weather index, whereas events in Greece and Amazonia had shorter predictability horizons. Formal attribution analyses indicated that the probability of extreme events has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude are projected to occur 2.22–9.58 times more frequently in Canada under high emission scenarios. Without mitigation, regions like Western Amazonia could see up to a 2.9-fold increase in extreme fire events. For the 2024–25 fire season, seasonal forecasts highlight moderate positive anomalies in fire weather for parts of western Canada and South America, but no clear signal for extreme anomalies is present in the forecast. This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society’s resilience to wildfires and promote advances in preparedness, mitigation, and adaptation

    Decoupling of chemical and isotope fractionation processes during atmospheric heating of micrometeorites

    No full text
    Micrometeorites experience varying degrees of evaporation and mixing with atmospheric oxygen during atmospheric entry. Evaporation due to gas drag heating alters the physicochemical properties of fully melted cosmic spherules (CSs), including the size, chemical and isotopic compositions and is thus expressed in its chemical and isotopic signatures. However, the extent of evaporation and atmospheric mixing in CSs often remains unclear, leading to uncertainties in precursor body identification and statistics. Several studies have previously estimated the extent of evaporation based on the contents of major refractory elements Ca and Al in combination with the determined Fe/Si atomic ratios. Similarly, attempts have been made to design classification schemes based on isotopic variations. However, a full integration of any previously defined chemical classification schemes with the observed isotopic variability has not yet been successful. As evaporation can lead to both chemical and isotope fractionation, it is important to verify whether the estimated degrees of evaporation based on chemical and isotopic proxies converge. Here, we have analysed the major and trace element compositions of 57 chondritic (mostly V-type) CSs, along with their Fe isotope ratios. The chemical (Zn, Na, K or CaO and Al2O3 concentrations) and δ56Fe isotope fractionation measured in these particles show no correlation. The interpretation of these results is twofold: (i) isotopic and chemical fractionation are governed by distinct processes or (ii) the proxies selected for chemical and isotope fractionation are inadequate. While the initial Fe isotopic ratios of chondrites are constrained within a relatively narrow range (0.005 ± 0.008‰ δ56Fe), the chemical compositions of CSs display larger variability. Cosmic spherules are thus often not chemically representative of their precursor bodies, due to their small size. As oxygen isotopes are commonly used to refine the precursor bodies of meteorites, triple oxygen isotope ratios were measured in thirty-seven of the characterized CSs. Based on the relationship between δ18O and δ57Fe, the evaporation effect on the O isotope system can be calculated, which allows for a more accurate parent body determination. Using this correction method, two ‘Group 4’ spherules with strongly variable degrees of isotope fractionation (δ56Fe of ∼1.0‰ and 29.1‰, respectively) could be distinguished. Furthermore, it was observed that all CSs that probably have a OC-like heritage underwent roughly the same degree of atmospheric mixing (∼8‰ δ18O). This highlights the potential of including Fe isotope measurements to the regular methodologies applied to CS studies
    corecore