17 research outputs found

    Lattice dynamics localization in low-angle twisted bilayer graphene

    Full text link
    A low twist angle between the two stacked crystal networks in bilayer graphene enables self-organized lattice reconstruction with the formation of a periodic domain. This superlattice modulates the vibrational and electronic structures, imposing new rules for electron-phonon coupling and the eventual observation of strong correlation and superconductivity. Direct optical images of the crystal superlattice in reconstructed twisted bilayer graphene are reported here, generated by the inelastic scattering of light in a nano-Raman spectroscope. The observation of the crystallographic structure with visible light is made possible due to lattice dynamics localization, the images resembling spectral variations caused by the presence of strain solitons and topological points. The results are rationalized by a nearly-free-phonon model and electronic calculations that highlight the relevance of solitons and topological points, particularly pronounced for structures with small twist angles. We anticipate our discovery to play a role in understanding Jahn-Teller effects and electronic Cooper pairing, among many other important phonon-related effects, and it may be useful for characterizing devices in the most prominent platform for the field of twistronics.Comment: 9 pages, 8 figure

    Growth optimization and device integration of narrow-bandgap graphene nanoribbons

    Get PDF
    The electronic, optical and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, we study the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs), which are expected to have an optimal band gap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultra-high vacuum conditions from Br- and I-substituted precursors. We show that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed us to integrate 5-AGNRs into devices and to realize the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. Our study highlights that optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs

    Electron–Phonon Coupling in a Magic-Angle Twisted-Bilayer Graphene Device from Gate-Dependent Raman Spectroscopy and Atomistic Modeling

    No full text
    The importance of phonons in the strong correlation phenomena observed in twisted-bilayer graphene (TBG) at the so-called magic-angle is under debate. Here we apply gate-dependent micro-Raman spectroscopy to monitor the G band line width in TBG devices of twist angles ! = 0° (Bernal), "1.1° (magic-angle), and "7° (large-angle). The results show a broad and p-/n-asymmetric doping behavior at the magic angle, in clear contrast to the behavior observed in twist angles above and below this point. Atomistic modeling reproduces the experimental observations in close connection with the joint density of electronic states in the electron−phonon scattering process, revealing how the unique electronic structure of magic-angle TBGs influences the electron−phonon coupling and, consequently, the G band line width. Overall, the value of the G band line width in magic-angle TBG is larger when compared to that of the other samples, in qualitative agreement with our calculations

    Raman Shifts in Electron-Irradiated Monolayer MoS<sub>2</sub>

    Get PDF
    We report how the presence of electron-beam-induced sulfur vacancies affects first-order Raman modes and correlate the effects with the evolution of the <i>in situ</i> transmission-electron microscopy two-terminal conductivity of monolayer MoS<sub>2</sub> under electron irradiation. We observe a red-shift in the E′ Raman peak and a less pronounced blue-shift in the A′<sub>1</sub> peak with increasing electron dose. Using energy-dispersive X-ray spectroscopy and selected-area electron diffraction, we show that irradiation causes partial removal of sulfur and correlate the dependence of the Raman peak shifts with S vacancy density (a few %). This allows us to quantitatively correlate the frequency shifts with vacancy concentration, as rationalized by first-principles density functional theory calculations. <i>In situ</i> device current measurements show an exponential decrease in channel current upon irradiation. Our analysis demonstrates that the observed frequency shifts are intrinsic properties of the defective systems and that Raman spectroscopy can be used as a quantitative diagnostic tool to characterize MoS<sub>2</sub>-based transport channels

    Localization of lattice dynamics in low-angle twisted bilayer graphene

    No full text
    Twisted bilayer graphene is created by slightly rotating the two crystal networks in bilayer graphene with respect to each other. For small twist angles, the material undergoes a self-organized lattice reconstruction, leading to the formation of a periodically repeated domain. The resulting superlattice modulates the vibrational and electronic structures within the material, leading to changes in the behaviour of electron–phonon coupling and to the observation of strong correlations and superconductivity. However, accessing these modulations and understanding the related effects are challenging, because the modulations are too small for experimental techniques to accurately resolve the relevant energy levels and too large for theoretical models to properly describe the localized effects. Here we report hyperspectral optical images, generated by a nano-Raman spectroscope, of the crystal superlattice in reconstructed (low-angle) twisted bilayer graphene. Observations of the crystallographic structure with visible light are made possible by the nano-Raman technique, which reveals the localization of lattice dynamics, with the presence of strain solitons and topological points causing detectable spectral variations. The results are rationalized by an atomistic model that enables evaluation of the local density of the electronic and vibrational states of the superlattice. This evaluation highlights the relevance of solitons and topological points for the vibrational and electronic properties of the structures, particularly for small twist angles. Our results are an important step towards understanding phonon-related effects at atomic and nanometric scales, such as Jahn–Teller effects and electronic Cooper pairing, and may help to improve device characterization in the context of the rapidly developing field of twistronics
    corecore