297 research outputs found

    The association between leukocytes and sperm quality is concentration dependent

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To evaluate the association between leukocytes (polymorphonuclear granulocytes -PMNL) and semen parameters at different leukocyte concentrations.</p> <p>Methods</p> <p>This was a retrospective clinical study at a university hospital andrology clinic. Semen samples from infertile men were analyzed for sperm morphology and motility according to seminal leukocytes (PMNL) concentration (category A: >0 to <0.25 × 10(6)/mL; category B: >0.25 to <0.5 × 10(6)/mL; category C: >0.5 to <0.75 × 10(6)/mL; category D: >0.75 to <1.0 × 10(6)/mL, category E: >1 × 10(6)/mL).</p> <p>Results</p> <p>The percentage of sperm with normal morphology increased significantly from category A (14%) to category D (19%) but decreased in category E to levels (14%) similar to those in category A. Motility grades a and a+b (combined) also increased from category A (12%, 20%) to category D (18.0%, 28.5%) and decreased in category E (11%, 20.5%) to levels similar to those in category A. Sperm deformities and motility grades c and d increased progressively in all categories.</p> <p>Summary</p> <p>Leukocytes had a positive association with normal morphology and progressive motility in semen samples at a concentration of 0-1 × 10(6)/mL. The findings suggest that the association between leukocytes (PMNL) and semen quality might be concentration dependent.</p

    Oxidative Stress in Zebrafish (Danio rerio) Sperm

    Get PDF
    Laboratories around the world have produced tens of thousands of mutant and transgenic zebrafish lines. As with mice, maintaining all of these valuable zebrafish genotypes is expensive, risky, and beyond the capacity of even the largest stock centers. Because reducing oxidative stress has become an important aspect of reducing the variability in mouse sperm cryopreservation, we examined whether antioxidants might improve cryopreservation of zebrafish sperm. Four experiments were conducted in this study. First, we used the xanthine-xanthine oxidase (X-XO) system to generate reactive oxygen species (ROS). The X-XO system was capable of producing a stress reaction in zebrafish sperm reducing its sperm motility in a concentration dependent manner (P<0.05). Second, we examined X-XO and the impact of antioxidants on sperm viability, ROS and motility. Catalase (CAT) mitigated stress and maintained viability and sperm motility (P>0.05), whereas superoxide dismutase (SOD) and vitamin E did not (P<0.05). Third, we evaluated ROS in zebrafish spermatozoa during cryopreservation and its effect on viability and motility. Methanol (8%) reduced viability and sperm motility (P<0.05), but the addition of CAT mitigated these effects (P>0.05), producing a mean 2.0 to 2.9-fold increase in post-thaw motility. Fourth, we examined the effect of additional cryoprotectants and CAT on fresh sperm motility. Cryoprotectants, 8% methanol and 10% dimethylacetamide (DMA), reduced the motility over the control value (P<0.5), whereas 10% dimethylformamide (DMF) with or without CAT did not (P>0.05). Zebrafish sperm protocols should be modified to improve the reliability of the cryopreservation process, perhaps using a different cryoprotectant. Regardless, the simple addition of CAT to present-day procedures will significantly improve this process, assuring increased and less variable fertilization success and allowing resource managers to dependably plan how many straws are needed to safely cryopreserve a genetic line

    Conserving, Distributing and Managing Genetically Modified Mouse Lines by Sperm Cryopreservation

    Get PDF
    Sperm from C57BL/6 mice are difficult to cryopreserve and recover. Yet, the majority of genetically modified (GM) lines are maintained on this genetic background.Reported here is the development of an easily implemented method that consistently yields fertilization rates of 70+/-5% with this strain. This six-fold increase is achieved by collecting sperm from the vas deferens and epididymis into a cryoprotective medium of 18% raffinose (w/v), 3% skim milk (w/v) and 477 microM monothioglycerol. The sperm suspension is loaded into 0.25 mL French straws and cooled at 37+/-1 degrees C/min before being plunged and then stored in LN(2). Subsequent to storage, the sperm are warmed at 2,232+/-162 degrees C/min and incubated in in vitro fertilization media for an hour prior to the addition of oocyte cumulus masses from superovulated females. Sperm from 735 GM mouse lines on 12 common genetic backgrounds including C57BL/6J, BALB/cJ, 129S1/SvImJ, FVB/NJ and NOD/ShiLtJ were cryopreserved and recovered. C57BL/6J and BALB/cByJ fertilization rates, using frozen sperm, were slightly reduced compared to rates involving fresh sperm; fertilization rates using fresh or frozen sperm were equivalent in all other lines. Developmental capacity of embryos produced using cryopreserved sperm was equivalent, or superior to, cryopreserved IVF-derived embryos.Combined, these results demonstrate the broad applicability of our approach as an economical and efficient option for archiving and distributing mice

    Purification and Characterization of a Sperm Motility Inhibiting Factor from Caprine Epididymal Plasma

    Get PDF
    Several studies have been reported on the occurrence of sperm motility inhibiting factors in the male reproductive fluids of different mammalian species, but these proteins have not been adequately purified and characterized. A novel sperm motility inhibiting factor (MIF-II) has been purified from caprine epididymal plasma (EP) by Hydroxylapatite gel adsorption chromatography, DEAE-Cellulose ion-exchange chromatography and chromatofocusing. The MIF-II has been purified to apparent homogeneity and the molecular weight estimated by Sephacryl S-300 gel filtration is 160 kDa. MIF-II is a dimeric protein, made up of two subunits each having a molecular mass of 80 kDa as shown by SDS-PAGE. The isoelectric point of MIF-II is 5.1 as determined by chromatofocusing and isoelectric focusing. It is a heat labile protein and maximal active at the pH 6.9 to 7.5. The sperm motility inhibiting protein factor at 2 µg/ml (12.5 nM) level showed maximal motility-inhibiting activity. The observation that the epididymal plasma factor lowered the intracellular cAMP level of spermatozoa in a concentration-dependent manner suggests that it may block the motility of caprine cauda spermatozoa by interfering the cAMP dependent motility function. The results revealed that the purified protein factor has the potential of sperm motility inhibition and may serve as a vaginal contraceptive. The antibody raised against the MIF-II has the potential for enhancement of forward motility of cauda-spermatozoa. This antibody may thus be useful for solving some of the problems of male infertility due to low sperm motility

    The Deadly Chytrid Fungus: A Story of an Emerging Pathogen

    Get PDF
    [Extract] Emerging infectious diseases present a great challenge for the health of both humans and wildlife. The increasing prevalence of drug-resistant fungal pathogens in humans [1] and recent outbreaks of novel fungal pathogens in wildlife populations [2] underscore the need to better understand the origins and mechanisms of fungal pathogenicity. One of the most dramatic examples of fungal impacts on vertebrate populations is the effect of the amphibian disease chytridiomycosis, caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd).\ud Amphibians around the world are experiencing unprecedented population losses and local extinctions [3]. While there are multiple causes of amphibian declines, many catastrophic die-offs are attributed to Bd [4],[5]. The chytrid pathogen has been documented in hundreds of amphibian species, and reports of Bd's impact on additional species and in additional geographic regions are accumulating at an alarming rate (e.g., see http://www.spatialepidemiology.net/bd). Bd is a microbial, aquatic fungus with distinct life stages. The motile stage, called a zoospore, swims using a flagellum and initiates the colonization of frog skin. Within the host epidermal cells, a zoospore forms a spherical thallus, which matures and produces new zoospores by dividing asexually, renewing the cycle of infection when zoospores are released to the skin surface (Figure 1). Bd is considered an emerging pathogen, discovered and described only a decade ago [6],[7]. Despite intensive ecological study of Bd over the last decade, a number of unanswered questions remain. Here we summarize what has been recently learned about this lethal pathogen

    Effects of Hepatitis B Virus S Protein Exposure on Sperm Membrane Integrity and Functions

    Get PDF
    Background: Hepatitis B is a public health problem worldwide. Viral infection can affect a man’s fertility, but only scant information about the influence of hepatitis B virus (HBV) infection on sperm quality is available. The purpose of this study was to investigate the effect of hepatitis B virus S protein (HBs) on human sperm membrane integrity and functions. Methods/Principal Findings: Reactive oxygen species (ROS), lipid peroxidation (LP), total antioxidant capacity (TAC) and phosphatidylserine (PS) externalization were determined. The terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays and flow cytometric analyses were performed. (1) After 3 h incubation with 25 mg/ml of HBs, the average rates of ROS positive cells, annexin V–positive/propidium iodide (PI)-negative cells, Caspases-3,-8,-9 positive cells and TUNEL-positive cells were significantly increased in the test groups as compared to those in the control groups, while TAC level was decreased when compared with the control. The level of malondialdehyde (MDA) in the sperm cells exposed to 50 mg/ml of HBs for 3 h was significantly higher than that in the control (P,0.05–0.01). (2) HBs increased the MDA levels and the numbers of ROS positive cells, annexin V–positive/PI-negative cells, caspases-3,-8,-9 positive cells and TUNEL-positive cells in a dose-dependent manner. (3) HBs monoclonal antibody (MAb) and N-Acetylcysteine (NAC) reduced the number of ROS-positive sperm cells. (4) HBs decreased the TAC levels in sperm cells in a dose-dependent manner. Conclusion: HBs exposure could lead to ROS generation, lipid peroxidation, TAC reduction, PS externalization, activation o

    An Epididymis-Specific Secretory Protein HongrES1 Critically Regulates Sperm Capacitation and Male Fertility

    Get PDF
    Mammalian sperm capacitation is an essential prerequisite to fertilizion. Although progress had been made in understanding the physiology and biochemistry of capacitation, little is known about the potential roles of epididymal proteins during this process. Here we report that HongrES1, a new member of the SERPIN (serine proteinase inhibitor) family exclusively expressed in the rat cauda epididymis and up-regulated by androgen, is secreted into the lumen and covers the sperm head. Co-culture of caudal sperms with HongrES1 antibody in vitro resulted in a significant increase in the percentage of capacitated spermatozoa. Furthermore, the percentage of capacitated spermatozoa clearly increased in rats when HongrES1 was down-regulated by RNAi in vivo. Remarkably, knockdown of HongrES1 in vivo led to reduced fertility accompanied with deformed appearance of fetuses and pups. These results identify HongrES1 as a novel and critical molecule in the regulation of sperm capacitation and male fertility
    corecore