5 research outputs found

    Lessons Learned from Applying Adaptation Pathways in Heatwave Risk Management in Antwerp and Key Challenges for Further Development

    Get PDF
    Heat exposure is a well-known health hazard, which causes several problems ranging from thermal discomfort or productivity reduction to the aggravation of existing illnesses and death. Climate projections foresee an increase in the frequency and intensity of heat-related impacts on human health. To reduce these climate risks, governments need a better understanding of not only the scale and the factors affecting those risks, but also how to prepare and protect the city and citizens against these risks and prevent them through effective policy making. Therefore, climate adaptation decisions need to be made in complex systems with manifold uncertainties. In response to these deep uncertainties, different planning approaches have been developed to assist policymakers in decision making. This paper is focused on one of the dynamic adaptive policy planning approaches: the adaptation pathway. This approach allows designing alternative feasible plans that are flexible and can respond when new information appears or when conditions in the environment change. This paper presents a structured methodology for designing adaptation pathways. The work describes a high-level adaptation pathway covering heatwave impacts on productivity and health at city level in Antwerp to ensure the city adapts to future conditions. Lastly, a summary is provided of the lessons learned and the challenges of this approach are discussed.This work was supported by the European Community’s Seventh Framework Programme (grant agreement no. 308497), Project RAMSES “Reconciling Adaptation, Mitigation and Sustainable Development for Cities” (2012–2017). In addition, this study has received partial funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 653522 (RESIN−Climate Resilient Cities and Infrastructures project)

    Lessons Learned from Applying Adaptation Pathways in Heatwave Risk Management in Antwerp and Key Challenges for Further Development

    No full text
    Heat exposure is a well-known health hazard, which causes several problems ranging from thermal discomfort or productivity reduction to the aggravation of existing illnesses and death. Climate projections foresee an increase in the frequency and intensity of heat-related impacts on human health. To reduce these climate risks, governments need a better understanding of not only the scale and the factors affecting those risks, but also how to prepare and protect the city and citizens against these risks and prevent them through effective policy making. Therefore, climate adaptation decisions need to be made in complex systems with manifold uncertainties. In response to these deep uncertainties, different planning approaches have been developed to assist policymakers in decision making. This paper is focused on one of the dynamic adaptive policy planning approaches: the adaptation pathway. This approach allows designing alternative feasible plans that are flexible and can respond when new information appears or when conditions in the environment change. This paper presents a structured methodology for designing adaptation pathways. The work describes a high-level adaptation pathway covering heatwave impacts on productivity and health at city level in Antwerp to ensure the city adapts to future conditions. Lastly, a summary is provided of the lessons learned and the challenges of this approach are discussed

    Environmental exposure to human carcinogens in teenagers and the association with DNA damage

    No full text
    Background: We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents. Material and methods: Six hundred 14-15-year-old youngsters were recruited all over Flanders (Belgium) and in two areas with important industrial activities. DNA damage was assessed by alkaline and formamidopyrimidine DNA glycosylase (Fpg) modified comet assays in peripheral blood cells and analysis of urinary 8-hydroxydeoxyguanosine (8-OHdG) levels. Personal exposure to potentially carcinogenic compounds was measured in urine, namely: chromium, cadmium, nickel, 1-hydroxypyrene as a proxy for exposure to other carcinogenic polycyclic aromatic hydrocarbons (PAHs), t,t-muconic acid as a metabolite of benzene, 2,5-dichlorophenol (2,5-DCP), organophosphate pesticide metabolites, and di(2-ethylhexyl) phthalate (DEHP) metabolites. In blood, arsenic, polychlorinated biphenyl (PCB) congeners 118 and 156, hexachlorobenzene (HCB), dichlorodiphenyltrichloroethane (DDT) and perfluorooctanoic acid (PFOA) were analyzed. Levels of methylmercury (MeHg) were measured in hair. Multiple linear regression models were used to establish exposure-response relationships. Results: Biomarkers of exposure to PAHs and urinary chromium were associated with higher levels of both 8-OHdG in urine and DNA damage detected by the alkaline comet assay. Concentrations of 8-OHdG in urine increased in relation with increasing concentrations of urinary t,t-muconic acid, cadmium, nickel, 2,5-DCP, and DEHP metabolites. Increased concentrations of PFOA in blood were associated with higher levels of DNA damage measured by the alkaline comet assay, whereas DDT was associated in the same direction with the Fpg-modified comet assay. Inverse associations were observed between blood arsenic, hair MeHg, PCB 156 and HCB, and urinary 8-OHdG. The latter exposure biomarkers were also associated with higher fish intake. Urinary nickel and t,t-muconic acid were inversely associated with the alkaline comet assay. Conclusion: This cross-sectional study found associations between current environmental exposure to (potential) human carcinogens in 14-15-year-old Flemish adolescents and short-term (oxidative) damage to DNA. Prospective follow-up will be required to investigate whether long-term effects may occur due to complex environmental exposures

    Environmental exposure to human carcinogens in teenagers and the association with DNA damage

    No full text
    We investigated whether human environmental exposure to chemicals that are labeled as (potential) carcinogens leads to increased (oxidative) damage to DNA in adolescents.publisher: Elsevier articletitle: Environmental exposure to human carcinogens in teenagers and the association with DNA damage journaltitle: Environmental Research articlelink: http://dx.doi.org/10.1016/j.envres.2016.10.012 content_type: article copyright: © 2016 Elsevier Inc. All rights reserved.status: publishe
    corecore