17 research outputs found

    Influence of Matric Suction on the Shear Strength Behaviour of Unsaturated Sand

    Get PDF
    As a part of the effort made to understand the behaviour of unsaturated soils, this work studies the shear strength characteristics of a cohesionless unsaturated soil. Generally, the determination of the shear strength of unsaturated soils is a great challenge to geotechnical engineers, both in terms of understanding it and the effort necessary to determine it. Matric suction is one of the stress state variables that control the shear strength of unsaturated soils. Therefore, the main aim of this study is to investigate the effect of matric suction on the shear strength characteristic of sand known commercially as Sand PR33. The shear strength behaviour of unsaturated sand is studied in this work using the constant water content triaxial test method with measurements of matric suction during the shearing stage. The tests were performed using the axis translation technique in such a way that the pore-air pressure was controlled while the pore-water pressure was measured during all tests

    A Numerical Model to Predict Matric Suction Inside Unsaturated Soils

    Get PDF
    The objective of this research is to introduce a numerical simulation model to predict approximate values of the matric suction inside unsaturated soils that have low water contents. The proposed model can be used to predict the relationship between the water content and the matric suction of a studied soil to construct the soil-water characteristic curve. In addition, the model can be utilized to combine the predicted matric suction with the soil parameters obtained experimentally, which enables us to explain how matric suction can affect the behaviour of unsaturated soils, without the need to utilize advanced measuring devices or special testing techniques. The model has given good results, especially when studying coarse-grained soils

    Cichlidae

    No full text

    Process and pattern in cichlid radiations - inferences for understanding unusually high rates of evolutionary diversification

    No full text
    The cichlid fish radiations in the African Great Lakes differ from all other known cases of rapid speciation in vertebrates by their spectacular trophic diversity and richness of sympatric species, comparable to the most rapid angiosperm radiations. I review factors that may have facilitated these radiations and compare these with insights from recent work on plant radiations. Work to date suggests that it was a coincidence of ecological opportunity, intrinsic ecological versatility and genomic flexibility, rapidly evolving behavioral mate choice and large amounts of standing genetic variation that permitted these spectacular fish radiations. I propose that spatially orthogonal gradients in the fit of phenotypes to the environment facilitate speciation because they allow colonization of alternative fitness peaks during clinal speciation despite local disruptive selection. Such gradients are manifold in lakes because of the interaction of water depth as an omnipresent third spatial dimension with other fitness-relevant variables. I introduce a conceptual model of adaptive radiation that integrates these elements and discuss its applicability to, and predictions for, plant radiations
    corecore