15 research outputs found

    A highly mutagenised barley (cv. Golden Promise) TILLING population coupled with strategies for screening-by-sequencing

    Get PDF
    Background:We developed and characterised a highly mutagenised TILLING population of the barley (Hordeum vulgare) cultivar Golden Promise. Golden Promise is the 'reference' genotype for barley transformation and a primary objective of using this cultivar was to be able to genetically complement observed mutations directly in order to prove gene function. Importantly, a reference genome assembly of Golden Promise has also recently been developed. As our primary interest was to identify mutations in genes involved in meiosis and recombination, to characterise the population we focused on a set of 46 genes from the literature that are possible meiosis gene candidates. Results:Sequencing 20 plants from the population using whole exome capture revealed that the mutation density in this population is high (one mutation every 154 kb), and consequently even in this small number of plants we identified several interesting mutations. We also recorded some issues with seed availability and germination. We subsequently designed and applied a simple two-dimensional pooling strategy to identify mutations in varying numbers of specific target genes by Illumina short read pooled-amplicon sequencing and subsequent deconvolution. In parallel we assembled a collection of semi-sterile mutants from the population and used a custom exome capture array targeting the 46 candidate meiotic genes to identify potentially causal mutations. Conclusions:We developed a highly mutagenised barley TILLING population in the transformation competent cultivar Golden Promise. We used novel and cost-efficient screening approaches to successfully identify a broad range of potentially deleterious variants that were subsequently validated by Sanger sequencing. These resources combined with a high-quality genome reference sequence opens new possibilities for efficient functional gene validation.Miriam Schreiber, Abdellah Barakate, Nicola Uzrek, Malcolm Macaulay, Adeline Sourdille, Jenny Morris, Pete E. Hedley, Luke Ramsay and Robbie Waug

    Loss of chromatin remodeler DDM1 causes segregation distortion in Arabidopsis thaliana

    No full text
    In ddm1 mutants, the DNA methylation is primarily affected in the heterochromatic region of the chromosomes, which is associated with the segregation distortion of SNPs in the F2 progenies. Segregation distortion (SD) is common in most genetic mapping experiments and a valuable resource to determine how gene loci induce deviation. Meiotic DNA crossing over and SD are under the control of several types of epigenetic modifications. DNA methylation is an important regulatory epigenetic modification that is inherited across generations. In the present study, we investigated the relationship between SD and DNA methylation. The ecotypes Col-0/C24 and chromatin remodeler mutants ddm1-10/Col and ddm1-15/C24 were reciprocally crossed to obtain F2 generations. A total of 300 plants for each reciprocally crossed plant in the F2 generations were subjected to next-generation sequencing to detect the single-nucleotide polymorphisms (SNPs) as DNA markers. All SNPs were analyzed using the Chi-square test method to determine their segregation ratio in F2 generations. Through the segregation ratio, whole-genome SNPs were classified into 16 classes. In class 10, the SNPs in the reciprocal crosses of wild type showed the expected Mendelian ratio of 1:2:1, while those in the reciprocal crosses of ddm1 mutants showed distortion. In contrast, all SNPs in class 16 displayed a normal 1:2:1 ratio, and class 1 showed SD, regardless of wild type or mutants, as assessed using CAPS (cleaved amplified polymorphic sequences) marker analysis to confirm the next-generation sequencing. In ddm1 mutants, the DNA methylation is highly reduced throughout the whole genome and more significantly in the heterochromatic regions of chromosomes. Our results showed that the ddm1 mutants exhibit low levels of DNA methylation, which facilitates the SD of SNPs primarily located in the heterochromatic region of chromosomes by reducing the heterozygous ratio. The present study will provide a strong base for future research focusing on the impact of DNA methylation on trait segregation and plant evolution

    Manipulation of crossover frequency and distribution for plant breeding

    No full text
    corecore