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Abstract 24 

Contamination of aquatic environments as a consequence of deep metal 25 

mining for Pb, Zn, Cu, Cd and Fe is of widespread international concern. 26 

Pollution resulting from metal mining activities can result in significant 27 

environmental and ecological degradation and can pose serious risks to 28 

human health through contamination of food and drinking water. This paper 29 

provides a review of the impacts of deep metal mine water discharges on 30 

riverine sedimentology, hydrology and ecology and explores strategies for the 31 

restoration of rivers draining historically abandoned metal mines. 32 

 33 

Physical processes of mine waste dispersal are relatively well understood. 34 

Chemical processes are more complex and much research is now focussed 35 

on understanding geochemical and mineralogical controls on metal 36 

attenuation and release. Recent advances in numerical modelling and 37 

geochemical tracing techniques offer the possibility of identifying present and 38 

predicted future patterns of contamination at the catchment scale. 39 

 40 

The character of mine water has been extensively studied. However, 41 

documented impacts on aquatic ecosystems can vary widely depending on a 42 

range of hydroclimatological and geochemical factors. Numerous studies 43 

have shown that the majority of the annual metal flux in rivers draining mining-44 

impacted regions occurs during the summer and autumn months as a result of 45 

water table drawdown, sulphide oxidation and dissolution and flushing of 46 

metal salts during subsequent storm periods. There have been few high-47 



resolution studies of stormflow hydrochemistry, despite the importance of high 48 

flows in the translocation of mine wastes. 49 

 50 

A growing number of studies have documented chronic and acute toxic 51 

effects of mine water contaminants, based on both field and laboratory 52 

research, with specific reference to riverine macroinvertebrates. Common 53 

bioindices have been used to examine the impacts of mine water 54 

contaminants on macroinvertebrate ecology, although the success of these 55 

indices has been mixed. Sublethal biomonitoring techniques, as distinct from 56 

traditional laboratory bioassays with lethal endpoints, have gained 57 

prominence as a means of detecting behavioural and physiological responses 58 

of an organism to pulses of contaminants. The development of Biotic Ligand 59 

Models (BLMs) has allowed organism physiology and important 60 

environmental parameters to be factored into assessments of metal toxicity. 61 

 62 

The strategies and technologies available for mine water remediation are 63 

considered and key knowledge gaps are highlighted. Passive remediation 64 

technologies offer a low cost and sustainable alternative to chemical 65 

treatment of deep metal mine discharges. However, at present, these systems 66 

generally fail to remove toxic metals associated with metal mine drainage to 67 

an acceptable standard. New phytoremediation techniques offer the possibility 68 

of immobilisation and extraction of toxic metals in mine spoil and 69 

contaminated soils.  70 

 71 

We conclude by identifying key recommendations for future research:  72 



(1) Researchers and regulators should consider bioavailable metal fractions in 73 

contaminated sediments, as opposed to total metal concentrations, if 74 

sediment ecotoxicity is to be accurately measured. In addition, more 75 

studies should make use of new spectroscopic techniques (e.g., XANES) 76 

capable of providing more detailed information on metal speciation and, 77 

therefore, sediment ecotoxicity. 78 

(2) There is a need for better sampling and monitoring of toxic metal 79 

concentrations and fluxes during stormflows in mining-impacted river 80 

systems, especially given future predicted increases in stormflow 81 

occurrence. In addition, further research is required to help understand the 82 

potential toxicological impacts of stormflows in mining-impacted 83 

catchments.  84 

(3) Further research is required to develop biological indices to identify the 85 

impacts of mine water contamination on macroinvertebrate communities.  86 

(4) New substrates and techniques for remediation of metal-rich mine waters 87 

are currently being investigated and pilot studies undertaken in the 88 

laboratory and field. Many show promising results at the laboratory scale 89 

but large-scale pilot treatment plants are required to test the efficiency and 90 

long-term sustainability under field conditions.  91 

(5) An interdisciplinary approach, incorporating the collaborative expertise and 92 

knowledge regarding sedimentological / geological, hydrological, chemical 93 

and ecological consequences of active and historic deep metal mining, is 94 

advocated and should be utilised for effective river basin management and 95 

the remediation and restoration of impacted sites. 96 

 97 
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1. Introduction 122 

Environmental impacts of mining on aquatic ecosystems have received 123 

increasing attention in recent years (Gray, 1998; Smolders et al., 2003; Olias 124 

et al., 2004; Batty et al., 2010).  Acidic drainage associated with the 125 

abandonment of coal mining activity has been a particular focus of research 126 

(Banks and Banks, 2001). Contaminated discharge from abandoned metal 127 

mines and their spoil heaps has received less attention, reflecting the highly 128 

variable responses associated with the complex and frequently site-specific 129 

hydrogeological context of each, and the highly variable hydrogeochemical 130 

characteristics of the discharge (Environment Agency, 2008a). However, 131 

metal mine discharges have resulted in the severe degradation of many rivers 132 

across the globe (Gray, 1998; Gundersen and Stiennes, 2001; Olias et al., 133 

2004; Sola et al., 2004; Poulton et al., 2010).  134 

 135 

Metal mining regions occur on all continents except Antarctica and even 136 

extend to the continental shelf in certain areas where former floodplains have 137 

been submerged by sea-level rise resulting from global warming (Aleva, 138 

1985).  As a consequence, significant contamination of the landscape, 139 

including riverine and riparian habitats, has been reported internationally 140 

(Smolders et al., 2003; Asta et al., 2007; Edraki et al., 2005; Gilchrist et al., 141 

2009; Brumbaugh et al., 2010). The most severely contaminated discharges 142 

typically occur shortly after abandonment of a site, when artificial dewatering 143 

has ceased and groundwater levels recover (Robb, 1994). Rising oxygenated 144 

groundwater within deep mines interacts with metal sulphides in exposed 145 

rockfaces, generating a leachate, typically characterised by low pH and high 146 



concentrations of dissolved toxic metals and sulphates (Braungardt et al., 147 

2003; Gilchrist et al., 2009). Where the water table reaches the surface, 148 

leachate may enter rivers and lakes as drainage from mine shafts and mine 149 

drainage levels (adits), whilst rainwater may infiltrate through surface spoil 150 

heaps and tailings to enter streams and other surface water bodies.  151 

 152 

Within riverine systems receiving metalliferrous drainage, the composition and 153 

health of plant and animal communities can be severely impaired through the 154 

combined toxicity of reactive metals in both the water column and sediments, 155 

sulphates and acidity (Sola et al., 2004; Schmitt et al., 2007; Batty et al., 156 

2010; Chapa-Vargas et al., 2010). Aqueous metal concentrations generally 157 

decline downstream of contaminated sources due to the precipitation of oxide,  158 

hydroxide and sulphate phases, and co-precipitation or sorption of metals 159 

onto these phases (Hudson-Edwards et al., 1999b). However, iron hydroxide 160 

‘ochre’ and other metal precipitates can cover the entire river bed in extreme 161 

instances and degrade habitat quality and important breeding and feeding 162 

areas for instream organisms (Batty, 2005; Mayes et al., 2008). Chronic 163 

contamination of riverine systems can be exacerbated by episodic flood 164 

events (Bradley 1984; Hudson-Edwards et al. 1999a; Dennis et al. 2009) or 165 

by the failure of tailing dams (Hudson-Edwards et al., 2003; Macklin et al., 166 

2003; Sola et al., 2004). Such events have led to significant ecological 167 

degradation in many regions of the world and have severely impacted 168 

communities dependent on local rivers and their floodplains for food and 169 

livelihood (Macklin et al., 2006; Taylor et al., 2010). 170 

 171 



Environmental degradation resulting from metal mining is not restricted to 172 

regions of the world where recent or active mineral exploitation is occurring. In 173 

the UK, metal mining reached its peak in the mid-nineteenth century when, for 174 

a time, the UK was the largest lead, tin and copper producer in the world 175 

(Lewin and Macklin, 1987). Following a global reduction in metal prices 176 

associated with the discovery of large deposits of lead and copper in the 177 

Iberian Peninsula, South America and Australia during the late 19th and early 178 

20th centuries, a decline of metal mining occurred throughout the UK. Today, 179 

the number of abandoned metal mines in England and Wales is estimated at 180 

over 3,000 (Jarvis et al., 2007). The historical legacy of these mines is still 181 

present in the landscape in the form of spoil heaps, abandoned adits and 182 

shafts, and derelict structures. The historical metal mining industry, long 183 

forgotten and often far removed from manufacturing centre’s, has left a 184 

significant legacy of environmental contamination which will persist for 185 

centuries to millennia (Environment Agency, 2002; Macklin et al., 2006). 186 

Approximately 20% of all water quality objective failures in England and 187 

Wales are due to drainage from abandoned metal mines (Environment 188 

Agency, 2006). The severity of the problem is underscored by the view of the 189 

Environment Agency of England and Wales that metal mine drainage poses 190 

the most serious threat to water quality objectives after diffuse agricultural 191 

pollution (Environment Agency, 2006).  192 

 193 

Since the 1960s, concerns over the environmental impacts of historic metal 194 

mining activities have gained increasing significance and this is reflected in 195 

the growing body of literature on the topic (e.g., Macklin et al., 2006; Batty et 196 



al., 2010). However, due to the highly variable nature of environmental 197 

degradation of surface waters draining metal mines and the site-specific 198 

nature of many impacts, the literature is scattered through a wide range of 199 

published sources (Wolkersdorfer, 2004). Unlike most review papers to date, 200 

which largely focus on specific environmental compartments in relative 201 

isolation to the wider aquatic ecosystem, this review paper aims to use an 202 

interdisciplinary perspective to critically review: (1) the sedimentological, 203 

hydrological and ecological impacts of metal mining activities; and (2) the 204 

potential for remediation of metal mine sites and the existing remediation 205 

technologies available.  206 

 207 

The review is organised into 5 main sections. Mine water chemistry has been 208 

studied extensively (e.g., Younger et al., 2002) and is generally well 209 

understood. Therefore, the purpose of section 2 is to provide a brief overview 210 

of the primary variables influencing the generation and character of metal 211 

mine drainage. There have been several systematic reviews of the 212 

sedimentological impacts of mining on the fluvial environment which have 213 

documented the physical and chemical factors controlling metal dispersal and 214 

storage in mining affected rivers systems (Lewin and Macklin, 1987; Macklin, 215 

1996; Miller, 1997). In addition, new technologies and approaches to help 216 

control and remediate sediment contamination have been widely considered 217 

(e.g., Macklin et al., 2006). Section 3 provides a review of the recent 218 

developments centred on new spectroscopic methods for the measurement of 219 

metal mobility and speciation, and evaluate the performance of sediment 220 

environmental quality standards. Section 4 of this review examines the 221 



catchment hydrological factors which influence the character of metal mine 222 

drainage in fluvial systems and discusses the important role of stormflows in 223 

transporting mine wastes from mine sites. In section 5, the ecological impacts 224 

associated with metal mines are examined with specific reference to benthic 225 

macroinvertebrate communities. While a significant body of research has 226 

been devoted to examining impacts on fish communities (Hallare et al., 2010), 227 

the benthic lifestyle of macroinvertebrates makes them more representative of 228 

local environmental conditions, and, therefore, more reliable indicators of 229 

biological stress. Previous reviews by Gerhardt (1993) and Batty et al. (2010) 230 

have considered the impact of toxic metals and acidity on macroinvertebrates. 231 

The present review builds on previous reviews by considering new 232 

developments in biomonitoring techniques and sublethal measurements of 233 

toxicity assessment. In the final section, remediation practices and 234 

technologies to treat metal mine discharges are evaluated. In each of the four 235 

key review sections (sedimentology, hydrology, ecology, remediation), we 236 

highlight the key research gaps that remain and identify opportunities for 237 

future research. 238 

 239 

Given that previous reviews have considered the environmental impacts 240 

associated with deep and surficial coal mining (Robb, 1994; Banks and 241 

Banks, 2001; Younger, 2002), and in particular acid mine drainage (Robb and 242 

Robinson, 1995; Banks et al., 1997; Gray, 1997), this review focuses on the 243 

impact of deep metal mines on riverine ecosystems with a particular emphasis 244 

on the following widely exploited metals: lead (Pb), zinc (Zn), copper (Cu), 245 

cadmium (Cd) and iron (Fe). All of these metals frequently occur at high 246 



concentrations within waters draining metal mines (Novotny, 1995; Younger et 247 

al., 2002). The review has broad geographical significance, but highlights 248 

several case studies from the UK to illustrate some of the historic impacts of 249 

metal mining activities on riverine ecosystems. Two search strategies were 250 

used to identify relevant empirical papers. First, key word and title searches of 251 

electronic databases were undertaken independently by the authors before 252 

comparing results. The databases searched were: ASFA Aquatic Sciences, 253 

Biological Sciences, Science Direct, SCOPUS, Toxline, Web of Science and 254 

Zetoc. The key search words were: metal mine, heavy metals, toxic metals, 255 

acid mine drainage, river sediment, flood hydrochemistry, benthic 256 

macroinvertebrate, mine remediation and environmental quality. Databases 257 

were searched from inception to December 2010. Second, relevant 258 

references within any identified papers were followed up. Searches were 259 

limited to papers published in English. 260 

 261 

2. Mine water chemistry 262 

Sulphidic minerals such as galena (lead sulphide - PbS), sphalerite (zinc 263 

sulphide – ZnS) and pyrite (iron disulphide – FeS2) are amongst the most 264 

commonly mined metal ores (Novotny, 1995). These minerals are formed 265 

under reducing conditions in the absence of oxygen and remain chemically 266 

stable in dry, anoxic and high pressure environments deep underground. 267 

However, these solid phases become chemically unstable when they are 268 

exposed to the atmosphere (oxygen and water) through natural weathering 269 

processes and long-term landform evolution or anthropogenic activities such 270 

as mining (Johnson, 2003). A series of complex biogeochemical reactions 271 



occurs in sulphide weathering processes, leading to the generation of a 272 

potentially toxic leachate and its release into the environment (Figure 1; 273 

Younger et al., 2002; Johnson, 2003; Evangelou and Zhang, 1995). The 274 

leachate generated during the sulphide weathering process is complex and is 275 

often referred to as acid mine drainage (AMD) or acid rock drainage (ARD). It 276 

is most commonly characterised by high levels of dissolved toxic metals and 277 

sulphates and low pH (Robb and Robinson, 1995; Braungardt et al., 2003). 278 

However, it should be noted that metal mine discharges are not always acidic 279 

(Banks et al., 2002). In general, an increase in pyrite content of the country 280 

rock results in greater acidity; an increase in base-metal sulphides results in 281 

greater toxic metal concentrations; while an increase in carbonate and silicate 282 

content can result in highly alkaline waters (Oyarzun et al., 2003; Alderton et 283 

al., 2005; Cidu and Mereu, 2007). In the UK, much of central and north Wales 284 

is underlain by Lower Palaeozoic shales and mudstones with low 285 

concentrations of base materials (Evans and Adams, 1975). As a result, many 286 

of the headwater streams of the region have low acid-buffering capability, 287 

resulting in extremely acidic discharges containing high levels of dissolved 288 

toxic metals (Abdullah and Royle, 1972; Fuge et al., 1991; Boult et al., 1994; 289 

Neal et al., 2005). In contrast, in those parts of the English Peak District 290 

where carbonate lithology predominates (Carboniferous Limestone), neutral to 291 

basic mine discharges are common and these have significantly lower 292 

concentrations of dissolved toxic metals (Smith et al., 2003). Aside from 293 

lithology and mineralogy, the character of mine water pollution can vary 294 

considerably between regions as a result of the grain size distribution of 295 

tailings and spoil (Hawkins, 2004), the exposed mineral surface area 296 



(Younger et al., 2002), the concentration of reactants such as dissolved 297 

oxygen (Wilkin, 2008), and microbial activity (Hallberg and Johnson, 2005; 298 

Natarajan et al., 2006; Balci, 2008). The highly variable nature of water 299 

chemistry associated with metal mine discharges is outlined in Table 1.  300 

 301 

3. Sedimentological impacts 302 

During the lifetime of a deep metal mine, ore extraction and processing can 303 

release vast quantities of solid waste into the riverine environment (Bird et al., 304 

2010). Even after mine abandonment, erosion of material from mine spoil and 305 

tailings can continue to introduce contaminated solid wastes into river 306 

channels and floodplains for many decades (Macklin et al., 2003; Walling et 307 

al., 2003; Miller et al., 2004; Dennis et al., 2009). These solid wastes can 308 

have a significant impact on the geochemistry of channel and floodplain 309 

sediments (e.g., Aleksander-Kwaterczak and Helios-Rybicka, 2009; Byrne et 310 

al., 2010) and also physical and chemical dispersion patterns of toxic metals 311 

(e.g., Hudson-Edwards et al., 1999b; Dennis et al., 2009). 312 

 313 

3.1 Sediment geochemistry 314 

Gross contamination of fluvial sediments both within the channel and on the 315 

floodplain has been reported in most metal mining regions of the world (Table 316 

2), with metal concentrations in sediments usually being several orders of 317 

magnitude greater than that in the water column (Macklin et al., 2006). Metal 318 

concentrations are greatest in the fine sediment fraction and, in particular, in 319 

the clay-silt fraction (< 63 µm; Lewin and Macklin, 1987; Foster and 320 

Charlesworth, 1996; Stone and Droppo, 1994; Dennis et al., 2003; Förstner, 321 



2004). This reflects the higher surface area per unit mass of smaller particles, 322 

and the ion-exchange capacity of silt and clay-sized fractions (which include 323 

clay minerals, iron hydroxides, manganese oxides, and organic matter in 324 

various states of humification). 325 

 326 

Metal speciation is essential to assess geochemical phases and the mobility 327 

of potentially toxic elements in contaminated sediments (Tokalioglu et al., 328 

2003). Until fairly recently, most investigations of sediment metal 329 

concentrations have used strong chemicals (e.g., HNO3, HCl, HClO4, HF) to 330 

extract the total amount of metals in the sediment, often leading to 331 

oversimplified interpretations that do not take sediment complexity into 332 

account (Linge, 2008). Metals in sediments exist in various geochemical 333 

phases which reflect the degree to which they can be re-mobilised from the 334 

sediment. For this reason, chemical sequential extraction procedures (SEPs) 335 

capable of identifying contaminant partitioning have become increasingly 336 

popular over total dissolution of the sediment achieved by single extractions 337 

(e.g., Tessier et al. 1979; Rauret et al., 1999). Various extraction media have 338 

been used to target specific geochemical phases, including electrolytes 339 

(CaCl2, MgCl2), pH buffers of weak acids (acetic, oxalic acid), chelating 340 

agents (EDTA, DTPA) and reducing agents (NH2OH). In many metal mining 341 

regions, the impact on sediment geochemistry has been to increase the 342 

proportion of toxic metals in the more mobile (bioavailable) geochemical 343 

phases. Studies have identified cadmium (Licheng and Guijiu, 1996; Morillo et 344 

al., 2002; Vasile and Vladescu, 2010), copper (Jain, 2004), zinc (Morillo et al., 345 

2002; Galan et al., 2003; Aleksander-Kwaterczak and Helios-Rybicka, 2009; 346 



Naji et al., 2010) and lead (Byrne et al., 2010) to be highly elevated in the 347 

acid-soluble phases. The largest proportion of metals is usually found in the 348 

reducible phase bound to Fe and Mn oxides (Macklin and Dowsett, 1989). 349 

Copper has been found to associate largely with organic matter in the 350 

oxidisable phase (Licheng and Guijiu, 1996).  351 

 352 

Sequential extraction procedures have allowed the chemical mobility and 353 

toxicological risk posed by contaminated sediments to be established allowing 354 

resource managers to prioritise areas for remediation. However, a number of 355 

doubts concerning the accuracy of selective chemical extraction schemes 356 

have been expressed (Linge, 2008). Particular concerns are whether the 357 

chemical extractant may attack phases other than those expected; and 358 

whether liberated metals may become associated with another sediment 359 

phase rather than staying in solution (Burton, 2010). The multitude of 360 

extraction techniques and media used can also lead to great variability in 361 

results and, in some instances, limits the ability to make direct comparisons 362 

between studies. Since the early 1990s, molecular scale techniques to study 363 

elemental binding have become more popular. X-ray absorption spectroscopy 364 

(XAS) techniques such as X-ray absorption near edge structure (XANES) and 365 

extended X-ray absorption fine structure (EXAFS) have allowed analysis at 366 

the molecular level and direct evidence of surface composition and bonding 367 

characteristics of mining-derived sediments (Esbrί et al., 2010; Van Damme et 368 

al., 2010). By investigating metal speciation at the atomic level, it is possible 369 

to establish metal toxicity, mobility and bioavailability with far greater accuracy 370 

than can be achieved using chemical extraction methods. This allows 371 



scientists and environmental managers to more accurately gauge the impact 372 

of toxic metals on ecosystems and human health. 373 

 374 

3.2 Physical dispersion and downstream attenuation processes 375 

The influx of large volumes of contaminated material into river systems can 376 

significantly alter local sediment transport and deposition and affect chemical 377 

processes that operate at and beneath the river-bed surface (Gilbert, 1917; 378 

Lewin et al., 1977; Wood and Armitage, 1997). A number of reviews have 379 

historically considered the hydrogeomorphic response of riverine systems to 380 

mining activities (e.g., Miller, 1997; Macklin et al., 2006) and as a result only 381 

limited coverage is provided here. Based on research in the UK, Lewin and 382 

Macklin (1987) suggested that disturbances of the river channel due to mining 383 

can be categorized as involving processes of ‘passive dispersal’ and ‘active 384 

transformation’. 385 

 386 

Passive Dispersal 387 

During passive dispersal, mine waste is transported from the mine site with no 388 

significant alteration of the prevailing sediment load of the river. Changes can 389 

occur in depositional environments, with slow flowing and deep pools being 390 

preferential sites for the deposition of contaminant-enriched fine sediment (< 391 

2000 µm). Transport of coarse sediment (> 2000 µm) may be limited to 392 

modest and high flow events. However, fine sediments may be transported 393 

under a range of different flows, including extended periods of base-flow. In-394 

channel sediment contamination generally decreases downstream from the 395 

contaminant source at rates that vary between systems but which, in many 396 



cases, are negatively exponential (Lewin and Macklin, 1987).  This pattern is 397 

functionally related to the hydraulic sorting of sediment based on density and 398 

size of ore particles (e.g., galena is more dense than sphalerite and smaller 399 

grains travel less fast than coarser grains - Wolfenden and Lewin 1978); 400 

dilution by uncontaminated sediments (Marcus, 1987); hydrogeochemical 401 

reactions (Hudson-Edwards et al., 1996); and biological uptake (Lewin and 402 

Macklin, 1987). In many cases, good fits between metal concentration and 403 

distance downstream of mining input can be achieved using regression 404 

analysis (Wolfenden and Lewin, 1977; Lewin and Macklin, 1987) or non-linear 405 

mixing models which incorporate clean and contaminated sediment sources 406 

within a river catchment (Marcus, 1987). However, these models are often 407 

specific to both the individual metal and the catchment for which they were 408 

developed (Dawson and Macklin, 1998; Miller, 1997). Movement of sediment 409 

can also occur in large-scale bed forms or ‘slugs’, which have been identified 410 

as associated with highs and lows in an otherwise downward trending metal 411 

concentration with distance downstream (Miller, 1997).  412 

 413 

Active Transformation 414 

Active transformation occurs in association with a significant increase in the 415 

input of mining debris to the fluvial system. This may cause intrinsic 416 

thresholds to be exceeded and, consequently, lead to a local loss of hydraulic 417 

or geomorphological equilibrium that manifests itself in changes in channel 418 

character (Lewin and Macklin, 1987). The type, rate and magnitude of 419 

erosional and depositional processes can change (Miller, 1997). Channel 420 

aggradation may be associated with sediment inputs from active mining and 421 



channel degradation may occur after mining has ceased (Gilbert, 1917; 422 

Knighton, 1991). Meandering channels may be transformed into braided 423 

forms (Warburton et al., 2002). Other depositional features can include scroll 424 

bars that arise from rapid accretion of sequentially developing point bars as a 425 

response to high sediment loads and channel migration, and substantial 426 

overbank floodplain deposits, particularly where overbank splays lead to 427 

avulsion channels that cross the flood plain (Miller, 1997; Walling et al., 2003; 428 

Dennis et al., 2009).  429 

 430 

Toxic metal contaminants can be extremely persistent within the environment 431 

and can remain stored within floodplain deposits for decades to millennia 432 

(Miller, 1997). Since the 1970’s, a significant amount of research has 433 

focussed on the role of historical metal mining in the contamination of 434 

floodplains (Table 2). Analyses of floodplain overbank sediments in the River 435 

Ouse catchment in northeast England revealed contaminated sedimentary 436 

successions reflecting over 2000 years of lead and zinc mining (Hudson-437 

Edwards et al., 1999a). It has been estimated that over 55% of the 438 

agriculturally important River Swale floodplain, a tributary of the Ouse, is 439 

significantly contaminated by toxic metals (Brewer et al., 2005). It has been 440 

estimated that approximately 28% of the lead produced in the Swale 441 

catchment remains within channel and floodplain sediments. At present rates 442 

of valley-bottom reworking through channel migration and erosion, it may take 443 

in excess of 5,000 years for all of the metal-rich sediment to be exported from 444 

the catchment (Dennis et al., 2009). These studies indicate that large areas of 445 

agricultural land are potentially contaminated and that there may be long-term 446 



health concerns for those ingesting contaminants via crops produced on this 447 

land (Albering et al., 1999; Conesa et al., 2010).  448 

 449 

Recent advances in geochemical tracing techniques and numerical modelling 450 

have led to improved understanding and predictability of dispersal rates and 451 

patterns of sediment-associated toxic metal contamination. Owens et al. 452 

(1999) used geochemical fingerprinting to identify the proportion of sediment 453 

from mining areas in the River Ouse catchment, UK. Using isotope 454 

signatures, several studies have differentiated specific geographical sources 455 

in mining-affected catchments (Hudson-Edwards et al., 1999a; Bird et al., 456 

2010). Bird et al. (2010) were able to discriminate between sediments derived 457 

from mine waste and river sediments using lead isotope signatures. They 458 

surmised that approximately 30% of the sediment load of the lower River 459 

Danube was derived from mining. Numerical modelling techniques now allow 460 

the prediction of contamination patterns in river catchments now and in the 461 

future. For example, the catchment sediment model TRACER has been 462 

applied to identify sediment contamination ‘hot spots’ in the River Swale 463 

catchment, UK (Coulthard and Macklin, 2003). The model also revealed that 464 

over 200 years after the cessation of mining activities, over 70% of the 465 

deposited contaminants remain in the Swale catchment.     466 

 467 

3.3 Chemical dispersion and attenuation processes 468 

Chemical transportation processes in sediments of metal mining-affected 469 

rivers become increasingly important after the closure and abandonment of 470 

deep mines (Lewin and Macklin, 1987; Bradley et al., 1995). Toxic metals can 471 



be attenuated downstream of a mining input through pH buffering, acid 472 

neutralisation, and precipitation and adsorption reactions (Routh and 473 

Ikramuddin, 1996; Ford et al., 1997; Lee et al., 2002; Ren and Packman, 474 

2004). The often termed ‘master variable’ for determining metal speciation in 475 

aquatic systems is pH (Kelly, 1988; Younger et al., 2002). As pH increases, 476 

aqueous metal species generally display an increasing tendency to precipitate 477 

as carbonate, oxide, hydroxide, phosphate, silicate or hydroxysulphate 478 

minerals (Salomons, 1993). The effects of increasing pH below mine 479 

discharges can be seen in some rivers by changes in precipitate mineralogy, 480 

with proximal capture by iron hydroxides and distal capture by aluminium 481 

oxides (e.g., Munk et al., 2002). Therefore, a major control on metal 482 

attenuation, acid production and stream pH at abandoned mine sites is the 483 

amount of carbonate minerals present in the surrounding geology. Carbonate 484 

minerals such as calcite, dolomite and siderite weather quickly and can buffer 485 

pH and act as adsorption sites for dissolved toxic metals. Non-carbonate 486 

minerals weather slowly and, where they predominate, can be extremely slow 487 

to react to changes in pH (Wilkin, 2008). The precipitation of solid-form metals 488 

limits the concentration of metals which are transported through the aquatic 489 

system as free ion species (Enid Martinez and McBride, 1998). These 490 

secondary minerals can also act as sorbents for dissolved metals (Enid-491 

Martinez and McBride, 1998; Asta et al., 2007; Wilkin, 2008). Adsorption of 492 

metals usually increases at higher pH so that substantial changes in dissolved 493 

metal concentrations can occur with small changes in pH, typically over 1 – 494 

1.5 pH units (Salomons, 1993). Aside from pH, several other water quality 495 

parameters can influence metal speciation, including the concentration of the 496 



metal, presence of ligands, redox conditions, salinity, hardness, and the 497 

presence of other metals (Novotny, 2003). High levels of salinity, hardness 498 

and organic matter content are known to increase metal attenuation by 499 

providing binding sites for metal sorption (Salomons, 1980; Dojlido and 500 

Taboryska, 1991; Achterberg et al., 2003).  501 

 502 

Under invariant environmental conditions, sediment geochemical phases are 503 

stable, chemical attenuation of metals will proceed at regular rates and, thus, 504 

metals remain immobile in river bed sediments (Morillo et al., 2002). However, 505 

sediments are not a permanent sink for metals and they may be released into 506 

the water column when suitable conditions for dissolution occur. Several 507 

studies have reported the mobilisation of reduced sediment-bound metals to 508 

the water column under oxidising conditions, for example, during floods and 509 

dredging activities (Calmano et al., 1993; Petersen et al., 1997; Kuwabara et 510 

al., 2000; Zoumis et al., 2001; Butler, 2009; Knott et al., 2009). In sediments 511 

from Hamburg harbour, Calmano et al. (1993) observed oxidation episodes to 512 

decrease pH in the suspended sediments from 7 to 3.4, leading to the 513 

mobilisation of zinc and cadmium. Similarly, oxidation of anoxic sediments 514 

from Mulde reservoir, Germany, resulted in the mobilisation of zinc and 515 

cadmium and redistribution of toxic metals to more bioavailable geochemical 516 

phases (Zoumis et al., 2001). Mullinger (2004) reported diffuse discharges of 517 

metals from bed sediments accounted for up to 40% of zinc, cadmium and 518 

copper entering surface waters of the Cwm Rheidol mine, Wales. Bioturbation 519 

(Zoumis et al., 2001) and changes in pH (Hermann and Neumann-Mahlkau, 520 

1985), dissolved organic carbon (Butler, 2009), ionic concentration (Dojlido 521 



and Taboryska, 1991), and the concentration of complexing agents 522 

(Fergusson, 1990; Morillo et al., 2002) have also been reported to lead to the 523 

release of ‘stored’ toxic metals into the wider environment.  524 

 525 

The contamination risk posed by toxic metals stored in aquatic sediments of 526 

former and current industrial centres (including metal mining regions), and the 527 

potential for these toxic metals to contaminate areas beyond the source of 528 

contamination, has prompted many national regulatory authorities to introduce 529 

sediment environmental quality standards (SEQS) (e.g., Environment Agency, 530 

2008b) based on total metal concentrations in the sediment. The practical 531 

application of SEQS is made difficult by a number of factors relating to the 532 

nature of heavy metal pollutants, including variation in natural background 533 

concentrations, the existence of chemical species, the concentrations of 534 

physico-chemical parameters, variations in organism sensitivity, and the fact 535 

that some heavy metals are essential elements for organisms (Comber et al., 536 

2008). In order to classify accurately the ecological status of rivers impacted 537 

by metal mining, sediment assessments may need to be unique to each river 538 

catchment and incorporate: background metal concentrations, an assessment 539 

of bioavailable fractions, and concurrent water quality measurements 540 

(including major ions) (Netzband et al. 2007; Brils 2008; Förstner 2009). As 541 

far as is known by the authors, most national monitoring and assessment 542 

programmes for freshwater systems measure total metal concentrations in 543 

sediments rather than the concentration of metals in different geochemical 544 

phases. Measurement of total quantities of metals in sediment provides little 545 

information regarding their ecotoxicity and their potential mobility. With the 546 



achievement of Good Ecological Status (GES) at the centre of many 547 

environmental improvement programmes (e.g., to comply with the European 548 

Water framework Directive), it is argued that measurement of bioavailable 549 

metals in the sediment, which can interact relatively easily with aquatic 550 

organisms, would provide a more comprehensive and robust assessment of 551 

ecological risk. In this respect, there is a real risk that such programmes are 552 

failing to meet their own objectives.  553 

 554 

4. Hydrological impacts 555 

The generation of mine water pollution is a product of many factors including 556 

local mineralogy, lithology, contaminant source area, and biogeochemical 557 

reactions (Younger et al., 2002). The character of mine water pollution in 558 

surface waters is strongly influenced by a wide range of hydroclimatological 559 

factors (including rainfall characteristics), land use (both catchment-wide and 560 

any changes associated with spoil heaps), seasonality, antecedent conditions 561 

to rainfall or snow-melt (particularly soil and spoil moisture content but also 562 

temperature), dominant hydrological transport pathways, and stream 563 

discharge (Gammons et al., 2005; Canovas et al., 2008). Once released to 564 

the water column, metals can move through the aquatic environment, 565 

resulting in impaired water quality in reaches of a river or estuary that were 566 

unaffected directly by deep mine drainage. Released metals can also interact 567 

with aquatic animals, resulting in the deterioration of aquatic ecosystem health 568 

(Farag et al., 1998).  569 

 570 



Traditionally, discharge has been seen as a master variable driving river 571 

hydrochemistry (Bradley and Lewin, 1982).Heavy metal ion concentrations in 572 

rivers are generally thought to be greatest during low flows and lowest 573 

coinciding with high flows, when uncontaminated runoff dilutes solute 574 

concentrations (Webb and Walling, 1983). Since the 1970s, many 575 

researchers have documented the effects of seasonal variability in stream 576 

discharge on toxic metal concentrations (e.g., Grimshaw et al., 1976; Keith et 577 

al., 2001; Sullivan and Drewer, 2001; Nagorski et al., 2003; Desbarats and 578 

Dirom, 2005; Hammarstrom et al., 2005). Annual patterns (hysteresis 579 

patterns) of dissolved metal concentrations are apparent in many rivers, 580 

reflecting the flushing of oxidised sulphides accumulated over dry summer 581 

(low flow) months (Canovas et al., 2008). Many researchers have noted 582 

maximum toxic metal concentrations as occurring during the first heavy rains 583 

of the hydrological year, during the autumn (Bradley and Lewin, 1982; Bird, 584 

1987; Boult et al., 1994; Braungardt et al., 2003; Desbarats and Dirom, 2005; 585 

Olias et al., 2004; Mighanetara et al., 2009). Contaminant concentrations 586 

typically decrease in winter and increase gradually through spring and 587 

summer as a result of increased sulphide oxidation and evaporation. 588 

Therefore, the timing of maximum contaminant flux will be largely a function of 589 

hydroclimatology, catchment characteristics and the minerals present at a 590 

mine site.   591 

 592 

It is understood that a major part of element transfer in rivers takes place 593 

during short episodes of high river flow, i.e. floods (Sanden et al., 1997). 594 

However, to date, very little research has been directed towards detailing toxic 595 



metal fluxes and hydrochemical variability during individual high flow events in 596 

former mining regions (Grimshaw et al., 1976; Bradley and Lewin, 1982; 597 

Sanden et al., 1997; Dawson and Macklin, 1998; Lambing et al., 1999; Wirt et 598 

al., 1999; Keith et al., 2001; Gammons et al., 2005; Canovas et al., 2008). 599 

One of the earliest studies by Grimshaw et al. (1976), on the River Ystwyth, 600 

Wales, observed hysteretic behaviour in the relation between metal 601 

concentrations and discharge, whereby metal concentrations increased on the 602 

rising limb of the flood hydrograph and decreased on the falling limb, 603 

associated with flushing and exhaustion (or dilution), respectively. This 604 

general pattern has also been reported in a number of more recent studies 605 

(e.g., Keith et al., 2001; Canovas et al., 2008; Byrne et al., 2009). In some 606 

instances, the source of metals in the initial flush was metal sulphates 607 

accumulated on the surface of mine waste (Keith et al., 2001) or 608 

contaminated groundwater efflux from mine portals (Canovas et al., 2008). 609 

Metal attenuation on the falling limb is principally due to rain-water dilution 610 

and the fact that the available contaminant are scavenged in the first flush 611 

(Canovas et al., 2008). The frequent occurrence of peak iron, manganese and 612 

aluminium concentrations on the falling limb of the hydrograph indicates that 613 

adsorption onto, or precipitation with, iron solids may be an important toxic 614 

metal attenuation mechanism during stormflow events in some rivers (Lee et 615 

al., 2002; Asta et al., 2007; Byrne et al., 2009).  616 

 617 

The mobilisation and transport of mine wastes during stormflows and the 618 

consequent contamination of agricultural lands is an important issue for 619 

environmental managers of former metal mining regions (Dennis et al., 2003; 620 



Connelly, 2009). During the 1990s, there was a marked increased interest in 621 

toxic metal contamination in floodplains in the UK following a number of 622 

devastating floods and an increased focus on the potential effects of climate 623 

change on hydrological regimes and sediment transport dynamics (Table 2). 624 

The autumn and winter floods of 2000-2001 across a substantial part of 625 

Europe caused large-scale remobilisation and deposition of contaminated 626 

sediments in floodplains and farm-land (Dennis et al., 2003; Macklin et al., 627 

2003; Macklin et al., 2006). In future, predicted increases in the frequency and 628 

magnitude of floods as a function of climate change may result in increased 629 

mobilisation and deposition of toxic metals in floodplains across Europe 630 

(Macklin et al., 2006; Environment Agency, 2008b; Förstner and Salomons, 631 

2008). Therefore, there is a need to monitor and assess stormflow events and 632 

river hydrochemistry in detail in order to quantify metal fluxes with reasonable 633 

levels of accuracy in order to allow environmental managers to prioritise areas 634 

for remediation.  635 

 636 

Aside from contamination of floodplains, the large-scale movement of mine 637 

waste during stormflow events has significance for aquatic ecosystem health. 638 

The highly elevated toxic metal concentrations during stormflows undoubtedly 639 

cause harm to aquatic communities and degrade biological quality (Wolz et 640 

al., 2009). The long-term effects of these transient conditions can be 641 

established through investigations of aquatic ecosystem health. However, the 642 

added or individual impact of stormflow events is still largely unknown due to 643 

the difficulty of measuring it. Predicted increases in the frequency and 644 

magnitude of floods across Europe due to climate change (Wilby et al., 2006) 645 



have put an emphasis on bridging the knowledge gap between the physical 646 

remobilisation of contaminants during stormflows and the potential 647 

toxicological impacts (Wolz et al., 2009). Understanding the toxicological 648 

impacts of stormflows will be important in the achievement of environmental 649 

quality standards in mining-affected river catchments. 650 

 651 

Most metal mines are associated with significant volumes of waste material 652 

deposited as surface spoil heaps and tailings. The hydrological behaviour of 653 

these waste deposits can be significantly different to the wider catchment due 654 

to the alteration of local surface and sub-surface flow pathways (Younger et 655 

al., 2002). Considering the important role of spoil material in the production of 656 

metal contaminants, comparatively little research has been undertaken into 657 

flow pathways and contaminant generating processes within mine spoil. Due 658 

to the artificial stratification and the discontinuities in permeability that occur 659 

within spoil heaps, they often have ’perched aquifers’ that lie well above the 660 

underlying bedrock, producing unique flow paths (Younger et al., 2002). The 661 

development of a water table in mine spoil depends on the predominant 662 

lithology of the spoil. For example, sandstone generally forms highly 663 

permeable spoil whereas mudstone produces spoil of low permeability. Highly 664 

permeable spoil can contain as much as 25% or more of ore as fines or 665 

solutes (Davies and Thornton, 1983). Where rainfall infiltration-excess is 666 

typical, because, for instance, fine-grained material produces a surface seal, 667 

surface runoff will be the predominant flow path (Younger et al., 2002). This 668 

will, through gully erosion, transfer large quantities of contaminated solids into 669 

the local water course. 670 



 671 

Changes in flow paths and direction within mine spoil can occur slowly 672 

through the seasons or more rapidly during rainfall events as different flow 673 

paths become active with the fluctuation of perched water tables (Walling and 674 

Webb, 1980). Differential hydrology can induce variability in toxic metal 675 

speciation in mine spoils and tailings (Kovacs et al., 2006). Generally, 676 

oxidation of sulphide minerals occurs in a shallow oxidation zone near the 677 

surface of the spoil (Jurjovec et al., 2002). Dissolution and flushing of these 678 

oxidised metals can then occur during wet periods (Navarro et al., 2008). 679 

Several studies of metal flushing during storms have reported the importance 680 

of weathered metal salts on and near the surface of mine spoil as responsible 681 

for increasing metal concentrations during runoff (Canovas et al., 2008; Byrne 682 

et al., 2009). Below the oxidation zone, a zone of transition from saturated to 683 

unsaturated sediments typically occurs, often characterised by a ‘hard pan’ of 684 

metal precipitates (Romero et al., 2007). Toxic metals can be attenuated in 685 

the mine spoil through a series of precipitation, co-precipitation and 686 

adsorption reactions. Reducing conditions in saturated sediments can lead to 687 

the formation of insoluble metal sulphides. pH buffering can occur in the 688 

shallow oxidizing zone with secondary-phase precipitation occurring near the 689 

deeper saturated zone (McGregor et al., 1998). In order to effectively plan for 690 

mine site remediation, it is essential that mine spoils and tailings are 691 

characterised in terms of mineralogy, metal speciation and hydrology, 692 

especially where contamination of groundwater is an issue. Such information 693 

is necessary to understand the mechanisms controlling the release and 694 

attenuation of metals at these sites. 695 



 696 

5. Ecological impacts of metal mine contamination on macroinvertebrate 697 

communities 698 

As early as the 1960s, the adverse impacts of mining activities on 699 

macroinvertebrates were being acknowledged (Reish and Gerlinger, 1964). 700 

Metal mine drainage can severely impact aquatic ecosystems by affecting 701 

primary and secondary production, nutrient cycling, energy flow and 702 

decomposition (Stoertz et al., 2002; Knott et al., 2009; Younger and 703 

Wolkersdorfer, 2004; Batty et al., 2010). Freshwater macroinvertebrates fulfil 704 

important roles in the river ecosystem, being vital food sources for many 705 

aquatic and terrestrial predators and playing a significant part in the cycling of 706 

organic matter and nutrients (Gerhardt, 1993). The pivotal position of benthic 707 

macroinvertebrates in aquatic food webs means that negative impacts on 708 

them can have widespread consequences within aquatic and terrestrial food-709 

webs for primary producers, predators and the wider ecosystem. As a result, 710 

macroinvertebrates have increasingly been used as indicators of stream 711 

ecosystem health associated with metal mining (e.g., Batty et al., 2010; 712 

Poulton et al., 2010).  713 

 714 

5.1 Changes in community composition  715 

A wide range of changes to macroinvertebrate community structure and 716 

composition have been reported in the scientific literature associated with 717 

metal mining activities. Reductions in abundance, number of taxa and 718 

biodiversity are common impacts reported in association with metal mining-719 

activities internationally (e.g., Willis, 1985; Gray, 1998; Amisah and Cowx, 720 



2000; Watanabe et al., 2000; Hirst et al., 2002; Kiffney and Clements, 2003) 721 

(Table 3). Investigations have generally revealed that some 722 

macroinvertebrate taxa display a tolerance or sensitivity to contamination 723 

(Table 3). Whilst investigating contaminated stretches of two rivers in Ohio, 724 

USA, Winner et al. (1980) hypothesised that habitats heavily polluted with 725 

toxic metals may be dominated by Chironomidae (Diptera – true fly larvae); 726 

moderately polluted habitats by Chironomidae and Trichoptera (caddisfly); 727 

and minimally or unpolluted habitats by caddisflies and Ephemeroptera 728 

(mayfly). Armitage et al. (1980; 2007) examined macroinvertebrate species 729 

composition of the mining impacted River Nent. Diptera and Plecoptera 730 

(stonefly) were the dominant orders observed in the river system. Trichoptera 731 

and mayfly (Ephemeroptera) were not abundant and seemed particularly 732 

sensitive to the mine water pollution. In contaminated reaches of the River 733 

Vascao, Portugal, the number of predators increased and the number of EPT 734 

taxa (Ephemeroptera – Plecoptera - Trichoptera) decreased, probably 735 

reflecting the presence of thick layers of metal hydroxides on the river 736 

substrate (Gerhardt et al., 2004). Sites subject to severe AMD contamination 737 

showed high levels of biodiversity due to high species richness of the tolerant 738 

species. In general, the order of toxicity of metal mine contamination to the 739 

most common macroinvertebrate orders is: Ephemeroptera > Trichoptera > 740 

Plecoptera > Diptera. However, there can be considerable variability in metal 741 

tolerance between macroinvertebrate taxa and species. For example, 742 

Ephemeroptera are generally considered to be highly sensitive to metal 743 

contamination despite some species (e.g., Baetis rhodani and Caenis cf. 744 

luctuosa) being reported to display some tolerance to metal contaminants 745 



(Roline, 1988; Beltman et al., 1999; Gower et al., 1994; Gerhardt et al., 2004; 746 

Gerhardt et al., 2005b). Several authors have reported impacts of mine water 747 

contamination on ecosystem function (Table 3), including reduced secondary 748 

production (Carlisle and Clements, 2005; Woodcock and Huryn, 2007), and a 749 

reduction in leaf matter (detritus) decomposition rates and microbial 750 

respiration (Kiffney and Clements, 2003; Carlisle and Clements, 2005). 751 

 752 

Relatively predictable changes in macroinvertebrate community structure as a 753 

result of pollution (e.g., decreased abundance and biodiversity, elimination of 754 

sensitive taxa) have led to the development of a number of biotic and diversity 755 

indices (e.g., Shannon, 1948; Berger and Parker, 1970). However, the 756 

performance of biological indices / metrics appear to vary widely when applied 757 

to mine water contaminated sites (Smolders et al., 2003; Van Damme et al., 758 

2008; Chadwick and Canton, 1984; Willis, 1985; Chadwick et al., 1986; Rhea 759 

et al., 2006). Variability in success is likely to be a function of the complicated 760 

interplay between the mine water components, other water quality 761 

parameters, and natural tolerances and sensitivities of organisms. Gray and 762 

Delaney (2008) suggest a modification of the Acid Waters Indicator 763 

Community (AWIC) index (Davy-Bowker et al., 2005) to incorporate metal 764 

toxicity may be required. However, such a revision would also need to 765 

address the pH bias in the calibration data and the (possibly) inaccurate 766 

grouping of macroinvertebrates in sensitivity groups. A revision of the 767 

Biological Monitoring Working Party (BMWP) system (Biological Monitoring 768 

Working Party, 1978), based on species’ tolerance to acidity and metal 769 

contamination, has also been suggested (Gray and Delaney, 2008) and some 770 



success has been achieved using a multi-metric approach by considering 771 

multiple biological metrics simultaneously (e.g., Clews and Ormerod, 2009). 772 

Clearly, there is scope for a biological index designed specifically for detecting 773 

the impacts of mine water contamination on aquatic communities. However, 774 

such an index would need to incorporate the effects on a community of 775 

multiple environmental stressors, the most important of which are probably 776 

dissolved metals and acidity.  777 

 778 

5.2 Changes in macroinvertebrate physiology and behaviour 779 

More subtle community alterations as a result of physiological or behavioural 780 

changes are less easy to diagnose (Younger and Wolkersdorfer, 2004) (Table 781 

3). For example, Petersen and Petersen (1983) reported anomalies in the 782 

construction of filter feeding nets of Hydropsychidae (Trichoptera) in rivers 783 

affected by a gradient of toxic metal pollution. Disruption of silk-spinning by 784 

contamination caused the caddisfly to spend more time in open habitats 785 

repairing the structure and thus more vulnerable to potential predators. Vuori 786 

(1994) observed metal exposure to affect the territorial behaviour of 787 

Hydropsychidae, relaxing levels of interspecific competition and increasing 788 

susceptibility to predation. Brinkman and Johnston (2008) reported decreased 789 

moulting rates (Rhithrogena hageni: Ephemeroptera) after exposure to high 790 

levels of copper, cadmium and zinc. In an experimental stream study, 791 

Clements et al. (1989) reported that high copper doses increased predation 792 

pressure, so much that the numbers of caddisfly, mayfly and chironomids 793 

were dramatically reduced. Maltby and Naylor (1990) found high zinc 794 

concentrations significantly impacted Gammarus pulex reproduction by 795 

causing a reduction in energy absorption and an increase in the number of 796 



broods aborted. Other behavioural responses reported associated with metal 797 

mine contamination include increased drift rates, physical avoidance of 798 

contaminated sediments, reduced burrowing / burial rates (Leland et al., 1989; 799 

Roper et al., 1995) and reduced leaf litter processing rates and microbial 800 

respiration (Kiffney and Clements, 2003; Carlisle and Clements, 2005). Many 801 

of the species specific differences reported within the literature have been 802 

attributed to trophic status with herbivores and detritivores typically being 803 

more sensitive to contamination than predators (Leland et al., 1989; 804 

Schultheis et al., 1997; Gerhardt et al., 2004; Poulton et al., 2010). Acute 805 

metal contamination can induce deformities and mutations of head and 806 

feeding structure in macroinvertebrate fauna (e.g., Groenendijk et al., 1998; 807 

Vermeulen et al., 2000; Groenendijk et al., 2002; De Bisthoven et al., 2005). 808 

Both zinc and lead have been implicated as teratogens (inducing deformities 809 

as a result of chronic exposure during the lifetime of the organism) and as a 810 

mutagen (inducing deformities in offspring due to DNA damage in parents 811 

from chronic exposure) in Chironomus riparius (Chironomidae) (Martinez et 812 

al., 2004).  813 

 814 

More recent studies have made use of biomonitoring techniques which are 815 

capable of detecting sublethal behavioural and physiological responses in an 816 

organism when exposed to a contaminant (e.g., De Bisthoven et al., 2004; 817 

Gerhardt et al., 2004; Gerhardt et al., 2005a; De Bisthoven et al., 2006; 818 

Gerhardt, 2007; Macedo-Sousa et al., 2007) (Table 3). A conceptual 819 

Stepwise Stress Model (SSM), proposed by Gerhardt et al. (2005a), 820 

postulates that an organism will display a time-dependent sequence of 821 



different regulatory and behavioural responses during exposure to 822 

contaminants over a certain threshold. Several species have been found to 823 

show a pH-dependent response to AMD involving, first, an increase in 824 

locomotion, followed by an increase in ventilation (e.g., Gerhardt et al., 2005a; 825 

De Bisthoven et al., 2006). An increased ventilation rate reflects changes in 826 

the organism’s respiratory and physiological system, and may be due to 827 

damage to gill membranes or nerve tissues. Locomotory activity probably 828 

represents an avoidance strategy from potentially toxic conditions. 829 

Importantly, biomonitoring methods integrate biochemical and physiological 830 

processes and so are a more comprehensive method than single biochemical 831 

or physiological parameters. In combination with the Stepwise Stress Model, 832 

online biomonitoring offers the possibility of a graduated ‘early warning’ 833 

system for the detection of pollution waves (Gerhardt et al., 2005a).  834 

 835 

5.3 Metal bioaccumulation in macroinvertebrates  836 

A significant body of research has concentrated on evaluating the 837 

bioaccumulation of toxic metals in macroinvertebrates as a measure of the 838 

bioavailability of contaminants (e.g., Farag et al., 1998; Smolders et al., 2003; 839 

Yi et al., 2008). Metals which are bioaccumulated by organisms and plants 840 

can be concentrated or magnified in the food chain (Sola et al., 2004) (Table 841 

3). Benthic primary producers and decomposers are known to accumulate 842 

significant amounts of metals with little or no deleterious effects (Farag et al., 843 

1998; Sanchez et al., 1998). These metals can be transferred to herbivorous 844 

and detritivorous macroinvertebrates which in turn can transfer the metals to 845 

higher trophic levels (Younger and Wolkersdorfer, 2004). Metal accumulation 846 



can vary between species, depending on a great number of physiological (e.g. 847 

cuticle type, the presence or absence of external plate gills, the processes 848 

which control metal distribution in the cell) and behavioural factors such as an 849 

organisms feeding strategy, contact with benthic sediments, larval stage and 850 

size (Dressing et al., 1982; Farag et al., 1998; Goodyear and McNeill, 1999; 851 

Sola and Prat, 2006; Cid et al., 2010). Metal intake can take place through 852 

direct exposure to metals in surface and pore waters or indirectly via food 853 

supply. Those metals which, through their chemistry, are almost completely 854 

sediment-bound (Fe, Mn, Pb, Al), will usually be most important for particle 855 

feeders. Metal intake in the tissue takes place at a cell membrane, typically in 856 

the gill or gut, depending on whether the metal is in solution in the 857 

surrounding water body or if it was ingested with food. A range of 858 

environmental factors determine the potential for metal bioaccumulation 859 

including metal concentration in the surrounding water, water hardness, 860 

presence of organic matter, feeding group and the ionic state of the metal 861 

(Gower and Darlington, 1990; Farag et al., 1998; Sola and Prat, 2006). The 862 

accumulation of metals in different organisms can also vary greatly as a result 863 

of natural or evolved tolerance mechanisms (Spehar et al., 1978; Gower and 864 

Darlington, 1990; Bahrndorff et al., 2006). For example, Plectrocnemia 865 

conspersa (Trichoptera), common in streams in south-west England affected 866 

by metal mine drainage were found to be tolerant of copper pollution (Gower 867 

and Darlington 1990). Some controlled microcosm experiments have reported 868 

tolerance to metal polluted sediments by Chironomus februarius 869 

(Chironomidae) (Bahrndorff et al. 2006). Mechanisms of tolerance might be 870 

methylation, increased metal excretion or decreased metallothionein 871 



production. Metallothionein is a metal-binding protein with the principal 872 

function of accumulating essential metals for normal metabolic processes 873 

(Howard, 1998). Its presence facilitates the accumulation of toxic metals, 874 

however decreased production of this protein may allow certain organisms to 875 

accumulate lower amounts of toxic metals. Despite the great range of factors 876 

which can affect metal bioaccumulation in organisms, bioaccumulation factors 877 

(BAFs) which consider tissue metal concentration in relation to the 878 

surrounding abiotic medium, are possibly a more robust biodiagnostic method 879 

than measurement of metal concentrations in the water column and benthic 880 

sediments. If water quality guidelines are to continue to be used, then 881 

additional research will need to be undertaken to determine appropriate 882 

guidelines (possibly above existing guidelines) to support aquatic 883 

communities. In the future, metal bioaccumulation will need to be studied in a 884 

greater range of macroinvertebrates in order to fully understand metal-885 

organism interactions in aquatic systems. A review of metal bioaccumulation 886 

studies by Goodyear and McNeill (1999) found that most studies primarily 887 

considered Ephemeropteran and Dipteran taxa and especially collector-888 

gatherer and predatory functional feeding groups / traits. 889 

 890 

5.4 Effects of environmental parameters on the toxicity of mine discharges  891 

Changes in some environmental parameters can affect the chemistry and, 892 

therefore, the toxicity of metals to organisms. The effects of salinity, water 893 

hardness and alkalinity on metal toxicity have been studied extensively (Stiff, 894 

1971; Brkovic-Popovic and Popovic, 1977; Gauss et al., 1985; Gower et al., 895 

1994; Yim et al., 2006, Riba et al., 2010 – Table 3). All of these studies 896 



reported metal toxicity increases for macroinvertebrate and fish species under 897 

low salinity, alkalinity and water hardness conditions. Increased metal toxicity 898 

has also been reported at low turbidity (Garcia-Garcia and Nandini, 2006) and 899 

DOM (dissolved organic material) levels (Gower et al., 1994). In river 900 

systems, carbonate minerals, clay minerals and DOM act as sorption sites for 901 

toxic metals and, therefore, high levels of these parameters help to reduce the 902 

concentration of dissolved toxic metals in bioavailable forms. However, 903 

bottom-dwelling organisms will take up sediment-bound metals through 904 

ingestion.  905 

 906 

While bioassay and microcosm studies have revealed much information on 907 

metal ecotoxicity, a possible criticism of them could be that they are too 908 

simplistic in seeking to evaluate the response of macroinvertebrate species or 909 

communities to a single metal contaminant. In reality, most contaminated 910 

mine waters will contain mixtures of different metals in solution (Table 3). The 911 

simplest solution has been to assume the toxic effects of the metals present in 912 

the mixture are additive (Vermeulen, 1995). However, the interaction between 913 

metals can result in synergistic effects. For example, Hickey and Golding 914 

(2002) reported total abundance of heptageniid mayflies, community 915 

respiration and macroinvertebrate drift were most sensitive to solutions with a 916 

mixture of zinc and copper. Clements (2004), in stream mesocosms, found 917 

negative responses were generally greatest with zinc alone or with zinc and 918 

cadmium. A possible explanation for this synergism is the physiological 919 

inhibition of metal excretion by one of the metals, allowing the other metal(s) 920 

to have greater toxic effects (Berninger and Pennanen, 1995). Mixtures of 921 



metals have also been shown to have antagonistic effects. Morley et al. 922 

(2002) found zinc and cadmium to have an antagonistic effect leading to 923 

increased survival of the cercarial stage of the parasitic fluke Diplostomum 924 

spathaceum. In some cases, antagonistic effects of metal mixtures are 925 

probably related to competition between metal ions for common sites of 926 

uptake (Younger and Wolkersdorfer, 2004). A study by Vermeulen (1995) 927 

illustrated the difficulty in predicting how metal mixtures will affect metal 928 

toxicity to organisms. Out of the 26 studies analysed, thirteen reported 929 

synergistic effects, six reported antagonistic effects, and seven reported 930 

additive effects. The problem of metal mixture toxicity is further compounded 931 

by other water quality parameters such as hardness, salinity and organic 932 

matter content. These parameters can increase or decrease metal toxicity and 933 

comparable mixtures of metals can also show contrasting toxicity effects 934 

between different groups, species and populations of organisms (Younger 935 

and Wolkersdorfer, 2004). 936 

 937 

The task of evaluating metal toxicity is made even more difficult when acidity 938 

is considered. Most commonly, a decrease in pH will increase the amount of 939 

toxic free metal ions due to changes in metal speciation, mobility and 940 

bioavailability (Campbell and Stokes, 1985). However, at low pH, metals tend 941 

to desorb from organisms due to competition with hydrogen ions for binding 942 

sites (Gerhardt, 1993). The effects of low pH on stream biota in the absence 943 

of dissolved metals can be lethal or sublethal, inducing a range of 944 

physiological changes including an upset of the ionic balance across 945 

organism membranes and hydrolysing of cellular components (Kelly, 1988). 946 



Campbell and Stokes (1985) suggested acidity can affect metal-organism 947 

interactions in two key ways. First, if a decrease in pH causes little change in 948 

metal speciation and there is only weak binding of metals at biological 949 

surfaces, the decrease in pH will decrease the toxicity of the metal due to 950 

competition with hydrogen ions for binding sites. Second, if a decrease in pH 951 

causes changes in speciation and there is strong binding at biological 952 

surfaces, then acidification will increase metal availability and toxicity. In the 953 

first instance, acidity will be the primary threat to ecosystems. In the second 954 

scenario, low pH and high dissolved metals may both influence toxicity.  955 

 956 

The multi-factor nature of contaminated mine discharges (acidity, dissolved 957 

metals, metal precipitates, sulphates) and the natural variability in water 958 

chemistry between regions means that metal toxicity can be highly variable. 959 

Historically, ambient water quality criteria have specified permissible total or 960 

dissolved metal concentrations even though metal toxicity is heavily 961 

dependent on water chemistry (e.g., hardness, pH, DOM). The Biotic Ligand 962 

Model (BLM) (Di Toro et al., 2001) was developed to predict metal toxicity by 963 

incorporating basic principles of physiology and toxicology, and the effects of 964 

water chemistry on metal speciation and bioavailability. The model has gained 965 

widespread use amongst the scientific / academic and water industry 966 

communities due to its potential for identifying water quality criteria and in 967 

facilitating risk assessment of aquatic environments (Paquin et al., 2002). In 968 

order to gain wider applicability and relevance, BLMs will need to be applied 969 

to a wider range of organisms and pollutants in the future, and to be able to 970 

incorporate metal mixtures into toxicity predictions (Niyogi and Wood, 2004).  971 



 972 

6. Remediation of mining-impacted river systems 973 

The prevention of contaminated discharge from mine sites is now required by 974 

law in many countries (Macklin et al., 2006). In the USA, the Clean Water Act 975 

(1972) was established to minimise the impact of anthropogenic pressures 976 

(including mining) on surface waters. In Europe, the adoption of the Water 977 

Framework Directive (2000/60/EC), and subsequent Mining Waste Directive 978 

(2006/21/EC), has necessitated the development of inventories of 979 

contaminant impacts at active and abandoned mine sites (Hering et al., 2010). 980 

New legislation, based on a greater understanding of water quality and 981 

ecological integrity issues arising from mine discharges, have prompted 982 

research into remediation technologies aimed at reducing the environmental 983 

impact of metal mines (PIRAMID Consortium, 2003).  984 

 985 

Mine water remediation technologies can be broadly categorised into active 986 

and passive treatment. Active treatment technologies are well established and 987 

involve the utilisation of electrical energy and mechanised procedures (Jarvis 988 

et al., 2006) and are dependent on continuous monitoring and maintenance 989 

(Robb and Robinson, 1995). Traditional active treatment processes involve a 990 

sequence of oxidation by physical or chemical means, the addition of alkaline 991 

chemicals to raise pH and accelerate oxidation and precipitation of metals 992 

(Robb and Robinson, 1995; Lund and McCullough, 2009), and settlement and 993 

filtration (PIRAMID Consortium, 2003). However, active treatment incurs 994 

substantial set-up, material and maintenance costs (PIRAMID Consortium, 995 

2003). In response, passive remediation utilising natural physical, chemical 996 



and biological processes and materials has found increasing favour over the 997 

past 30 years (Geroni et al., 2009). Passive remediation systems use 998 

naturally available energy (e.g., topographical gradient, metabolic energy, 999 

photosynthesis) to drive he remediative processes and have the principal 1000 

advantages over active remediation of reduced set up and maintenance costs 1001 

(Pulles and Heath, 2009). Some passive systems (e.g., wetlands) require 1002 

significantly greater land area than active treatment systems; although they do 1003 

not require costly reagents and incur less operational maintenance (Norton, 1004 

1992; Hedin et al., 1994). Detailed characterisation of contaminant loading 1005 

over a sufficiently long time period is required prior to implementation of 1006 

treatment systems, including measurements of seasonal variation and the 1007 

impact of episodic contaminant flushing events, e.g., associated with spate 1008 

flows (Younger et al., 2005; Byrne et al., 2009). Equally important is the 1009 

linking of all mine water sources with a treatment system. Many abandoned 1010 

mine sites have substantial diffuse sources (Pirrie et al., 2003; Mayes et al., 1011 

2008; Mighanetara et al., 2009; Byrne et al., 2010), including mine spoil and 1012 

mobile metal fractions in the river bed. As a result it may be difficult to collect 1013 

and route contaminated runoff to treatment areas.  1014 

 1015 

Mine water treatment technologies have been extensively reviewed elsewhere 1016 

(e.g., Brown et al., 2002; Younger et al., 2002; PIRAMID Consortium, 2003; 1017 

Lottermoser, 2007) and so a brief overview is provided (Table 4). Both 1018 

wetlands and Reducing and Alkalinity Producing Systems (RAPS) are now 1019 

well established remediation technologies throughout North America (e.g., 1020 

Hedin et al., 1994) and Europe (e.g., Whitehead and Prior, 2005) as passive 1021 



treatment options for sulphate and Fe-rich, net-alkaline and net-acidic coal 1022 

mine discharges (Batty and Younger, 2004). In anoxic systems, removal of 1023 

toxic metals (e.g., zinc, lead, copper, cadmium) is hypothesised to occur 1024 

through the formation of insoluble metal sulphides and carbonates (Younger 1025 

et al., 2002 – See Table 4). In aerobic systems, some toxic metals can be 1026 

removed either by direct precipitation as oxides and hydroxides or carbonate 1027 

phases or by co-precipitation with iron, manganese and aluminium 1028 

hydroxides. However, rates of toxic metal removal in these systems 1029 

(particularly zinc) have, in general, proved insufficient in circum-neutral and 1030 

net-alkaline mine waters, where chalcophile metals are the principal 1031 

contaminants (Robb and Robinson, 1995; Nuttall and Younger, 2000). Some 1032 

success has been achieved using variations of conventional calcite and 1033 

organic-based treatment systems in laboratory-scale experiments (Nuttall and 1034 

Younger, 2000; Rotting et al., 2007; Mayes et al., 2009). A large number of 1035 

researchers have also demonstrated the potential for organic and inorganic 1036 

sorbent media to remove toxic metals (Cui et al., 2006; Perkins et al., 2006; 1037 

Madzivire et al., 2009; Mayes et al., 2009; Rieuwerts et al., 2009; Koukouzas 1038 

et al., 2010; Vinod et al., 2010). However, many of these technologies are still 1039 

at the experimental stage and will require further refinement and large-scale 1040 

field pilot studies before their full potential is realised. Frequent blocking of 1041 

filtering media with metal precipitates and rapid consumption of reactive 1042 

surfaces limit the metal removal efficiency of many of these systems to very 1043 

short time scales – hours to days in some instances (Younger et al., 2002).  1044 

 1045 



Even with mine water treatment, the legacy of contamination in river 1046 

sediments and floodplains will represent a significant secondary diffuse 1047 

source of pollution long after other water quality parameters have improved to 1048 

acceptable levels. Therefore, contaminated sediments of mining-affected 1049 

rivers will continue to pose a serious threat to ecological integrity and the 1050 

achievement of Good Chemical Status (GCS) and Good Ecological Status 1051 

(GES) under the EU Water Framework Directive. The historical, preferred 1052 

method of dealing with contaminated sediment is removal by dredging (Nayar 1053 

et al., 2004). This is an expensive and destructive process which may 1054 

mobilise vast reservoirs of bioavailable metals as part of the process (Nayar 1055 

et al., 2004; Knott et al., 2009). Furthermore, the sediment removed still 1056 

requires treatment and safe disposal. Recently, geochemical engineering 1057 

approaches involving in-situ and ex-situ biological and chemical treatment of 1058 

contaminated soils and sediments have gained attention as alternatives 1059 

(Förstner, 2004), and some success has been achieved in the stabilisation 1060 

and removal of toxic metals (Guangwei et al., 2009; Luoping et al., 2009; 1061 

Scanferla et al., 2009). However, the principal necessity for the protection of 1062 

sediment and aquatic systems is considered to be the development of 1063 

guidelines concerning sediment quality (Burton, 2010; Byrne et al., 2010).   1064 

 1065 

Some efforts have focussed on the prevention of the generation of 1066 

contaminated mine water, so-called source control techniques. Conventional 1067 

techniques have focussed on physical and chemical stabilisation (Mendez 1068 

and Maier, 2008). Physical stabilisation involves covering mine waste with 1069 

inert material (e.g., clay, gravel) to reduce oxygen inflow and water ingress 1070 



into the contaminated material (Gandy and Younger, 2003; Waygood and 1071 

Ferriera, 2009). However, clay caps in arid and semi-arid regions have tended 1072 

to crack from wetting and drying cycles resulting in the failure of the air-tight 1073 

cap (Newson and Fahey, 2003). Chemical stabilisation is achieved by adding 1074 

a resinous adhesive to form a crust over the mine waste, however, these also 1075 

are prone to cracking and failure (Tordoff et al., 2000). More recently, 1076 

phytoremediation (phytoextraction and phytostabilisation) techniques have 1077 

developed as less costly alternatives (Marques et al., 2009). 1078 

Phytostabilisation creates a vegetative cap on the mine waste which 1079 

immobilises metals by adsorption and accumulation in the rhizosphere 1080 

(Mendez and Maier, 2008). Some success has been achieved in laboratory 1081 

trials investigating reforestation of mine tailings using endemic tree species 1082 

(Pollmann et al., 2009). Phytoextraction offers the possibility of recovery of 1083 

metals through the hyperaccumulation of metals in plant tissues (Ernst, 2005). 1084 

However, the long-term performance of these new strategies needs to be 1085 

evaluated, as does the bioavailability of metals to wildlife which may feed on 1086 

the vegetative covers. 1087 

 1088 

7. Synthesis and conclusions 1089 

This paper provides a critical synthesis of scientific literature related to the 1090 

sedimentological, hydrological and ecological impacts of metal mining on 1091 

aquatic ecosystems. It has also highlighted the potential for remediation of 1092 

mine sites and provided an overview of current research and technological 1093 

developments in this area. 1094 

 1095 



The important role of sediments in the dispersal, storage and recycling of 1096 

metal contaminants within the fluvial environment has been highlighted. 1097 

Significant quantities of contaminated sediment are eroded and transported 1098 

into aquatic systems from abandoned metal mines and both physical and 1099 

chemical processes influence the distribution of toxic metals within riverine 1100 

ecosystems. Physical dispersal processes are generally well understood and 1101 

can be classified as passive or active (Lewin and Macklin, 1987), the latter 1102 

prevailing when the addition of mine wastes to a river system results in a 1103 

threshold crossing event and the collapse of geomorphological equilibrium. 1104 

Under these circumstances, significant contamination of floodplains by toxic 1105 

metals can occur, with long-term potential consequences for the environment, 1106 

society and human health. However, recent advances in geochemical tracing 1107 

techniques and numerical modelling have led to improved understanding and 1108 

predictability of dispersal rates and patterns of sediment-associated toxic 1109 

metal contamination (Coulthard and Macklin, 2003). Chemical dispersal of 1110 

mine wastes tends to predominate after mine closure and four principal 1111 

processes result in toxic metal attenuation downstream of inputs – pH 1112 

buffering, acid neutralisation, precipitation and adsorption. However, river 1113 

sediments are not a permanent store for toxic metals and they may be 1114 

released into the water column if there are fluctuations in some important 1115 

environmental parameters (i.e. pH and redox potential). As a result, 1116 

establishing metal speciation, bioavailability and potential mobility is essential 1117 

in order to prioritise sites for remediation. Recently, molecular scale 1118 

techniques to study elemental binding have become more accessible to 1119 

researchers. A greater number of geochemical studies should make use of 1120 



these techniques to provide more accurate information on bonding 1121 

characteristics of metals in sediments. Environmental regulators are 1122 

beginning to acknowledge the central role of sediments in maintaining 1123 

ecological quality in river systems. We have argued that the measurement / 1124 

quantification of total metal concentrations, as is practiced by many 1125 

regulators, provides limited information on the potential toxicity of sediments. 1126 

Measurement of the bioavailable metal fraction within benthic sediments is 1127 

considered a more accurate gauge of potential metal toxicity. 1128 

 1129 

The character of metal mine drainage after it enters surface waters is affected 1130 

by many factors including stream discharge, rainfall characteristics, conditions 1131 

antecedent to rainfall-runoff events and season, and the interaction of a large 1132 

permutation of processes which must be understood and quantified in order to 1133 

mitigate effectively. Seasonal variability in metal concentrations is linked to 1134 

oxidation and dissolution of metal sulphates, leading to elevated metal 1135 

concentrations in summer and autumn months. At many mine sites, the 1136 

transport of significant amounts of mine waste is limited to stormflows. 1137 

Typically, hysteresis is evident in the relationship between metal 1138 

concentrations and discharge. Peak metal concentrations are achieved before 1139 

peak discharge, associated with the dissolution of surface oxidised material. 1140 

Despite the importance of stormflows for the transport of mine wastes, little 1141 

research has concentrated on investigating toxic metal fluxes and 1142 

hydrochemical variability under these conditions. Predicted increases in the 1143 

frequency and magnitude of floods as a function of climate change may result 1144 

in increased mobilisation and deposition of toxic metals in floodplains across 1145 



Europe. Stormflow hydrochemistry in rivers draining mine sites should be 1146 

studied in more detail in order to quantify metal fluxes more accurately and 1147 

allow environmental managers to prioritise areas for remediation. Toxic metal 1148 

flushing during stormflows potentially impacts stream ecosystems by 1149 

significantly increasing the toxicity of the river water, even if only for short time 1150 

periods. More research is needed to help understand the potential 1151 

toxicological impacts of stormflows in mining-affected river catchments. 1152 

Relatively few studies have investigated mine spoil hydrology and metal 1153 

attenuation and release processes. Environmental investigations at 1154 

abandoned metal mine sites should include assessments of mine spoil in 1155 

terms of mineralogy, metal speciation and hydrology, especially where 1156 

contamination of groundwater is an issue.  1157 

 1158 

Metal mine contaminants in river systems can have a variety of negative 1159 

impacts on macroinvertebrate ecology and biology, including changes to 1160 

community structure, physiological and behavioural impacts as well as direct 1161 

mortality. Typically, rivers heavily impacted by metal mine drainage have 1162 

reduced species diversity and abundance, and tend to be dominated by 1163 

Dipteran species. The order of toxicity in mining-impacted streams generally 1164 

proceeds in the order Ephemeroptera > Trichoptera > Plecoptera > Diptera. 1165 

Bioindices are used widely to quantify contaminant impacts on 1166 

macroinvertebrate communities. However, there effectiveness in discerning 1167 

the impacts of metal mine contamination is questionable, with widely varying 1168 

performance reported in the literature. The problem appears to be related to 1169 

the multi-factor nature of mine discharges. Further research is required to 1170 



develop a biological index specifically for the detection of the impacts of mine 1171 

water contamination on macroinvertebrate communities and the wider 1172 

ecosystem. Traditionally, laboratory bioassay experiments have been used to 1173 

investigate metal and AMD toxicity, with organism mortality being the test 1174 

endpoint. Recently, biomonitoring techniques capable of detecting sublethal 1175 

behavioural and physiological responses in an organism have become 1176 

popular (e.g., Gerhardt et al., 2004). They have the principal advantage over 1177 

bioassays of integrating both biochemical and physiological processes. A 1178 

major criticism of bioassay and microcosm studies is that they generally do 1179 

not consider metal mixtures or the influence of other environmental 1180 

parameters on metal toxicity. The development of the Biotic Ligand Model has 1181 

allowed organism physiology and important environmental parameters to be 1182 

factored into assessments of metal toxicity (Di Toro et al., 2001). However, to 1183 

reach their full potential, BLMs will need to be applied to a wider range of 1184 

organisms and pollutants, and they will need to be able to incorporate metal 1185 

mixtures into toxicity predictions. 1186 

 1187 

An increasing range of remediation technologies have been developed for the 1188 

treatment of contaminated mine water which can be applied in a variety of 1189 

topographical settings. Chemical treatment of mine waters is expensive and 1190 

unsustainable over the substantial time periods treatment will be required. 1191 

Passive remediation technologies offer a low cost and sustainable alternative. 1192 

Passive systems for the treatment of coal mine discharges, where iron, 1193 

sulphates and acidity are the principal contaminants, are considered proven 1194 

technology. However, these systems generally fail to remove toxic metals 1195 



(e.g., Zn, Pb, Cd), associated with metal mine discharges, to an acceptable 1196 

standard. New substrates and techniques aimed at removing high 1197 

concentrations of these toxic metals are being trialled and many show 1198 

promise at the laboratory scale. However, large-scale pilot treatment plants 1199 

are needed in order to develop these new systems and to test them in field-1200 

relevant conditions. Even with mine water treatment, mine spoil and 1201 

contaminated soils in mining regions will continue to pose a threat to water 1202 

and ecological quality for many years into the future. New bio-based source 1203 

control techniques such as phytoremediation offer the possibility of stabilising, 1204 

immobilising and extracting toxic metals from soils at low cost, by using plants 1205 

which hyper-accumulate toxic metals in their tissue. However, the long-term 1206 

functioning and ecological impact of these new strategies needs to be 1207 

evaluated. 1208 

 1209 

A management approach which can draw on the expertise of separate but 1210 

related and relevant disciplines such as hydrology, hydrochemistry, sediment 1211 

geochemistry, fluvial geomorphology and aquatic ecology affords the 1212 

opportunity for a more complete understanding of processes and impacts in 1213 

mining-impacted river catchments. It is hoped that this review will help to 1214 

contribute to our knowledge and understanding of the impacts of metal mining 1215 

on aquatic ecosystems and highlight the usefulness of approaching such 1216 

problems from a multi-disciplinary geographical point of view. 1217 

 1218 
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 2211 

 2212 

Figure 1 The process of pyrite weathering in a deep metal mine. Four general 2213 

equations describe the chemistry of pyrite weathering and the production of 2214 

AMD – (1) The oxidation of pyrite by oxygen and water in atmospheric 2215 

conditions to produce dissolved ferrous iron and sulphuric acid; (2) the 2216 

oxidation of dissolved ferrous iron to ferric iron; (3) the hydrolysis of ferric iron 2217 

with water to produce iron hydroxide precipitate (ochre) and acidity; (4) the 2218 

oxidation of additional pyrite by the ferric iron generated in reaction (2) to 2219 

produce dissolved ferrous iron and sulphuric acid. The acidic conditions 2220 

generated during these processes can dissolve oxidised trace metals. The 2221 

process is accelerated by the presence of sulphide and iron-oxidising 2222 

bacteria. 2223 

 2224 



Table 1 A comparison of dissolved metal (mg/l), sulphate (mg/l) and pH concentrations from waters impacted by historical deep 2225 

metal mining. 2226 

Location  Sample type Pb Zn Cu Cd Fe SO4 pH Author(s) 

          

Europe          

River Carnon, England Mine drainage <0.01 - 0.02 0.12 - 23 0.02 - 1.3 <0.01 - 0.02 <0.01 - 49 77 - 789 3.3 - 7.7 Neal et al. (2005) 

River Tamar, England Adit drainage <0.01 - 0.17 <0.1 - 2.5 <0.01 - 1.4 <0.01 - 0.01 0.05 - 2.6 10 - 89 3.4 - 7.8 Mighanetara et al. (2009) 

Funtana Raminosa Mining 

District, Italy 

Tailings 

drainage 

<0.01 0.08 - 34 <0.01 - 0.04 <0.01 - 0.85 0.02 - 0.25 22 - 1680 7.1 - 7.8 Cidu and Mereu (2007) 

Buchim Mining district, 

Macedonia 

Mine stream 0.03* 0.03* 0.62* <0.01* 0.3* - 5.1* Alderton et al. (2005) 

Zletovo Mining District, 

Macedonia 

Adit drainage 0.06* 21.57* 0.46* 0.14* 98.2* - 3.4* Alderton et al. (2005) 

River Zletovska, Macedonia Channel <0.03 – 0.8 0.04 - 70.07 <0.01 - 1.05 <0.01 - 0.24 0.1 - 103.3 - 3.4 - 7.6 Alderton et al. (2005) 

River Bjorgasen, Norway Channel - 5.4b 2.7 b 0.01 b - - 3.2 b Gundersen and Stiennes (2001) 

Rio Tinto, Spain Channel 0.1 - 2.4 0.3 - 420 0.05 - 240 - - 2800 - 16000 1.4 - 7.6 Hudson-Edwards et al. (1999b) 

Troya Mine, Spain Tailings pond 0.02 - 0.05 4.99 - 18.95 <0.01 - 0.03 0.01 - 0.03 0.04 - 0.33 - - Marques et al. (2001) 

River Odiel, Spain Channel <0.01 - 1.18 0.17 - 130.23 0.01 - 37.62 <0.01 - 0.38 0.03 - 262.71 50.7 - 3960 2.5 - 6.3 Olias et al. (2004) 

Tintillo River, Spain Mine drainage 0.01 - 0.07 7.3 - 216 3.5 - 115 <0.01 – 0.51 264 - 1973 1300 - 11580 2.3 - 2.8 Sanchez Espana et al. (2006) 

Tinto Santa Rosa Mine, Spain Mine drainage <0.01 - 0.08 56 - 85 15 - 23 0.09 - 0.15 234 - 881 2704 - 4026 2.6 - 3.4 Asta et al. (2007) 



Fluminese Mining District, Spain Mine water <0.01 - 0.05 0.88 - 40 - <0.01 - 0.09 <0.01 - 12 17 - 640 6.3 - 8.2 Cidu et al. (2007) 

River Tawe, Wales Channel <0.01 – 0.15 0.01 - 8.8 <0.01 - 0.04 <0.01 - 0.16 - - - Vivian and Massie (1977) 

River Rheidol, Wales Channel <0.01 0.08 - 0.29 - <0.01 - 5.3 - 7.1 5.5 - 6.4 Fuge et al. (1991) 

River Yswyth, Wales Channel 0.06 – 0.09 0.17 - 0.36 - <0.01 - nd - 5.3 4.1 – 4.6 Fuge et al. (1991) 

Cwm Rheidol Mine, Wales Adit drainage 0.02 – 0.04 38 - 72 0.03 - 0.07 0.04 - 0.11 - 441 - 846 2.8 - 3.0 Fuge et al. (1991) 

Cwm Ystwyth Mine, Wales Spoil drainage 0.29 - 3.3 1.5 - 4.6 <0.01 <0.01 - nd 4.1* Fuge et al. (1991) 

Cae Coch Pyrite Mine, Wales Mine water - - - - 2261b 6590 b 2.4 b McGinness and Johnson (1993) 

River Goch, Wales Channel - <0.01 - 4.19 <0.01 - 5.99 - <0.01 - 25.98 - 2.3 - 7.7 Boult et al. (1994) 

Cwm Rheidol Mine, Wales Spoil drainage - 577 - 978 1.2 - 9.35 - - - 2.6 - 2.7 Johnson (2003) 

          

North America          

West Squaw Creek, USA Channel - 0.01 -  156 <0.01- 190 - 0.03 - 500 2.6 - 5100 2.4 - 6.9 Filipek et al. (1987) 

Richmond Mine, USA Mine water 1 - 120 0.06 – 23.5a 0.21 - 4.76a 4 - 2110 2.47 – 79.7a 14 - 760a -3.6 - 1.5 Nordstrom et al. (2000) 

Peru Creek, USA Channel - 0.55 - 1.89 0.05 - 0.22 - 0.08 - 0.5 29.6 - 73 4.7 - 5.9 Sullivan and Drever (2001) 

Boulder Creek, USA Channel <0.032* 0.469* 0.246* <0.01* 2.82* 97.4* 3.3* Keith et al. (2001) 

Black Foot River, USA Channel - <0.2 - 535 <0.8 - 4 <0.5 - 2.6 <5 - 37 5.5 - 88.8 7.3 - 8.8 Nagorski et al. (2002) 

Phillips Mine, USA Channel <0.01 <0.01 - 0.17 0.02 - 3.13 - 0.16 - 42.4 25 - 368 2.3 – 6.5 Gilchrist et al. (2009) 

          

Australasia           

River Dee, Australia Channel <0.01 - 0.6 <0.01 - 10.4 <0.01 - 45.03 - <0.01 - 74 340 - 5950 2.7 - 7.0 Edraki et al. (2005) 



Mt. Morgan Mine, Australia Open pit 1.51* 21.97* 44.54* - 253* 13600* 2.7* Edraki et al. (2005) 

          

nd = not detectable. * single observation.  a grams per litre. b mean value 
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Table 2 Comparison of metal concentrations (mg/kg) in channel and floodplain sediments from historic deep metal mining impacted 2240 

rivers. 2241 

River location Geomorphic-type 

site 

Grain size 

fraction 

Metal phase 

extracted 

Pb Zn Cu Cd Author(s) 

         

Europe         

Red River, England Channel <2000 µm Total nd - 120 nd - 630 nd - 1320 - Yim (1981) 

River Derwent, England Channel <1000 µm Total 96 - 3120 82 - 2760 - 0.6 - 13.8 Burrows and Whitton (1983) 

River Derwent, England Floodplain <2000 µm Total 131 - 1179 <10 - 1696 2.9 - 64 0.08 - 12.5 Bradley and Cox (1990) 

River Tyne, England Floodplain <2000 µm Total 615 - 2340 722 - 2340 11 - 42.5 2.6 - 8 Macklin et al. (1992) 

River Swale, England Floodplain <63 µm Total 56 - 5507 15 - 3066 - 1 - 18 Macklin et al. (1994) 

River Allen, England Channel <170 µm Total 2330* 1410* - - Goodyear et al. (1996) 

River Severn, England Floodplain <2000 µm Total 23 - 204 173 - 936 30 - 67 0.35 - 6.4 Taylor (1996) 

River Tees, England Channel <2000 µm Total 522 - 6880 404 - 1920 20 - 77 0.95 - 5.95 Hudson-Edwards et al. (1997) 

River Aire, England Channel <63 µm Total 90 - 237 274 - 580 118 - 198 - Walling et al. (2003) 

River Swale, England Floodplain  <63 µm Total 10000* 14000* - 7500* Dennis et al. (2003) 

River Calder, England Channel <63 µm Total 199 - 343 397 - 907 141 - 235 - Walling et al. (2003) 

River Wear, England Channel <150 µm Total 20 - 15000 40 - 1500 <10 - 340 - Lord and Morgan (2003) 

Dale Beck, England Channel <2000 µm Total 13693* 442* 206* - Geer (2004) 

River Avoca, Ireland Channel <1000 µm Total - 1520a 674a - Herr and Gray (1996) 

River Mala Panew, Poland Channel <63 µm Total 36 - 3309 126 - 11153 3.97 - 483 0.18 - 559 Aleksander-Kwaterczak and Helios-



Rybicka (2009) 

River Somes, Romania Channel  <2000 µm Total 28 - 6800 64 - 19600 12 - 8400 0.8 - 110 Macklin et al. (2003) 

River Viseu, Romania Floodplain <2000 μm total 17 - 850 110 - 2760 32 - 1000 0.5 - 17 Macklin et al. (2005) 

Gezala Creek, Spain Channel <177 µm Total 10.6 - 37630 216 - 25676 2.7 - 1691 0.22 - 45 Marques et al. (2001) 

River Tinto, Spain Channel <2000 µm Total 3200 - 16500 600 - 67300 1800 - 26500 <1 - 23 Galan et al. (2003) 

River Odiel, Spain Channel <2000 µm Total 1900 - 16600 1000 - 74600 3500 - 20900 1.4 – 10.2 Galan et al. (2003) 

River Rheidol, Wales Floodplain <2000 µm Total 291 - 2098 242 - 630 21 - 85 0.08 - 3.5 Davies and Lewin (1974) 

River Tawe, Wales Channel <2000 µm Total 63 - 6993 20 - 31199 34 - 2000 2 - 335 Vivian and Massie (1977) 

River Rheidol, Wales Floodplain <210 µm Total 813 - 1717 201 - 383 33 - 120 - Wolfenden and Lewin (1977) 

River Towy, Wales Channel <2000 µm Total 36 - 5732 106 - 3722 44 - 259 0.78 - 83 Wolfenden and Lewin (1978)  

River Twymyn, Wales Channel <2000 µm Total 593 - 6411 159 - 6955 44 - 2557 1.5 - 44 Wolfenden and Lewin (1978) 

River Ystywth, Wales Floodplain <2000 µm Total 73 - 4646 123 - 1543 - - Lewin et al. (1983) 

River Twymyn, Wales Channel <63 μm Non-residual 1.1 - 2914 0.7 - 148 0.3 - 30 <0.01 - 0.9 Byrne et al. (2010) 

         

North America         

West Squaw Creek, USA Channel <177 µm Total - 32 - 5940 254 - 4090 - Filipek et al. (1987) 

Black Foot River, USA Channel <63 µm Total 1100 - 8700 1700 - 9600 1400 - 9900 <1 - 115 Nagorski et al. (2002) 

River Cedar, USA Channel - Total 4.5 - 420 9.75 - 2050 2.3 - 107 0.07 - 3.8 Ouyang et al. (2002) 

Copper Mine Brook, USA Channel <1000 µm Total 9.9 - 30 9 - 67 31 - 398 - Gilchrist et al. (2009) 

         

Australasia         

River Kangjiaxi, China Channel - Non-residual 1154 - 8034 124 - 2319 23 - 209 2.6 - 41 Licheng and Guiju (1996) 



         

nd = not detectable. * maximum value.  b mean value.     
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Table 3 Impacts of metal mine drainage on instream macroinvertebrates reported within the scientific literature. Types of studies 2255 

are - a stream survey, b microcosm experiment and c laboratory bioassay. 2256 

Primary impact reported Additional information Author(s) 

   

Community composition  

Shift in community structure Clean sites dominated by Ephemeroptera and Plecoptera; moderately contaminated sites dominated by 

Plecoptera and Diptera; and heavily contaminated sites dominated by Diptera 

Armitage (1980)a 

 Clean sites dominated by Ephemeroptera; moderately contaminated sites by Tricoptera; and heavily 

contaminated sites dominated by Diptera 

Winner et al. (1980)a 

 Contaminated sites dominated by Orthocladiinae (Chironomidae) and species of net-spinning Tricoptera Clements et al. (1992)a 

 Contaminated sites dominated by Chironomidae Gray (1998)a 

 Ephemeroptera reduced by > 75% in moderately contaminated streams Clements et al. (2000)a 

 Clean sites dominated by Stenopsychidae (Trichoptera); contaminated sites dominated by Chironomidae and 

Epeorus latifolium (Ephemeroptera)  

Watanabe et al. (2000)a 

 Contaminated sites dominated by Chironomidae, Tubificidae, Baetidae and Simulidae Marques et al.(2003)a 

 Heavily contaminated sites dominated by Chironomidae  Smolders et  al. (2003)a 

 Dominance of predators in very acidic mining sites   Gerhardt et al. (2004)a 

 Heavily contaminated sites  characterised by high proportion of Chironominae and predatory Tanypodinae Janssens de Bisthoven et al. (2005)a 

Decrease in abundance Reduction in abundance recorded Willis (1985)a, Gray (1998)a, Hirst et al. 

(2002)a 

 Ephemeroptera comprised less than 5% of individuals at one location Clements et al. (1992)a 



 Abundance significantly lower in experiments with metal mixtures and high predation pressure Kiffney (1996)b 

 Abundance positively related to stream alkalinity and pH Malmqvist and Hoffsten (1999)a 

 Ephemeroptera and Plecoptera particularly affected Clements (2004)b 

Decrease in number of taxa Reduced number of taxa recorded Willis (1985)a, Kiffney (1996)b, Gray 

(1998)a 

 Decrease most pronounced in low flow conditions Clements et al. (1992)a 

Decrease in EPT taxa EPT richness positively related to stream pH  Malmqvist and Hoffsten (1999)a 

 Near extinction of mayfly species Hickey and Golding (2002)a 

 Reduced number of EPT taxa recorded Gerhardt et al. (2004)a 

Decrease in species diversity Reduced species diversity recorded Amisah and Cowx (2000)a, Hirst et al. 

(2002)a 

 Dominance of Chironomidae Smolders et  al. (2003)a 

 Dominance of Chironomidae, Baetidae and Simulidae Van Damme et al. (2008)a 

Impaired ecosystem function Microbial colonisation of leaf material and leaf decomposition inhibited by high Cd concentrations Giesy et al. (1978)b 

 Microbial activity and leaf decomposition rates significantly lower at contaminated sites Carpenter et al. (1983)a 

 Secondary production of shredders negatively associated with metal contamination; leaf decomposition rates 

decreased; microbial respiration decreased 

Carlisle and Clements (2005)a 

 Reduced secondary production and organic matter storage Woodcock and Huryn (2007)a 

 Greater vulnerability of net-spinning Tricoptera to predation possibly due to spending more time in the open 

repairing capture nets 

Clements et al. (1989)b 

  

Macroinvertebrate physiology   



Physiological response Differences in metal sensitivity related to trophic status; herbivores and detritivores more sensitive than 

predators 

Leland et al. (1989)a 

 Decrease in reproduction rates of Gammuras pulex (Gammaridae) Maltby and Naylor (1990)c 

 Differences in sensitivity related to trophic status; reduced leaf decomposition rates suggests shredders 

sensitive to pollution 

Schultheis et al. (1997)a 

 Increase incident of deformity (mentum structure) in Chironomous riparius (Chironomidae) Groenendijk et al. (1998)a 

 Increased incident of deformity (mentum structure) and decreased moulting success in Chironomous riparius 

(Chironomidae) 

Vermeulen et al. (2000)c 

 pH-dependent decrease in locomotion of Atyaephyra desmaersti (Crustacea) in AMD solutions Gerhardt et al. (2004)c 

 Locomotion and ventilation of Choroterpes picteti (Leptophlebiidae) greater in acid only solutions than in AMD 

solutions 

Gerhardt et al. (2005a)c 

 pH-dependent increase in locomotion and ventilation of Gambusia holbrooki (Crustacea) in AMD solutions Gerhardt et al. (2005b)c 

 pH-dependent decrease in locomotion and ventilation of  Atyaephyra desmaresti (Crustacea) in AMD solutions Janssens De Bisthoven et al. (2006)c 

 Contaminated water causes higher locomotory activity in Lumbriculus variegates (Oligochaeta) than 

contaminated sediment  

Gerhardt (2007)c 

 Decrease in pH and increase in dissolved metals caused decrease in locomotion and inhibition of feeding rate 

in Echinogammarus meridionalis (Crustacea) 

Macedo-Sousa et al. (2007)c 

 Pulse of AMD caused early warning responses in Echinogammarus meridionalis (Crustacea) consisting of 

increased locomotion and subsequent increase in ventilitation 

Macedo-Sousa et al. (2008)c 

 Average daily moulting rate of Rithrogena hageni (Heptageniidae) decreased after exposure to aqueous 

copper, cadmium and zinc 

Brinkman and Johnston (2008)c 

Behavioural response Anomalies in capture nets of Hydropsychidae  Petersen and Petersen (1983)a 



 Decrease in burrowing rates and increase in crawling and drifting rates of Macomona liliana (Bivalve) Roper et al. (1995)c 

Morphological deformities Cross-breeding of Chironomous riparius (Chironomidae) from contaminated and clean rivers revealed some 

level of genetic adaptation to metals in offspring 

Groenendijk et al. (2002)b 

 Macroinvertebrate drift and respiration significant correlated with metal concentrations Clements (2004)b 

 Increased incident of adult and larval deformities in Chironomous tentans (Chironomidae) Martinez et al. (2004)c 

 Decreased locomotory activity of Chironomous sp. (Chironomidae) in AMD solutions Janssens De Bisthoven et al. (2004)c 

Metal bioaccumulation Younger instars had higher metal concentrations than older instars Krantzberg (1989)c 

 Concentration of metals in Ephemeropteran species decreased in consecutive larval stages Jop (1991)c 

 Metal bioaccumulation dependent on feeding group; shredders and scrapers accumulated the highest metal 

concentrations (biofilm contained more metals than sediments) 

Farag et al. (1998)a 

 Whole-body metal concentrations of Hydropsyche sp. (Hydropsychidae) greater in species exposed to 

dissolved metals than in species exposed to AMD precipitates 

DeNicola and Stapleton (2002)b 

 Chironomus februarius (Chironomidae) exhibited adaptation to and tolerance of metal-polluted sediments Bahrndorff et al. (2006)b 

 Macroinvertebrate metrics significantly correlated with metals in biofilm, suggesting biofilm is a better index 

than macroinvertebrates for monitoring metal impacts on aquatic systems 

Rhea et al. (2006)a 

 Whole-body metal concentrations of Hydropsyche sp. (Hydropsychidae) were strongly positively correlated 

with metal concentrations in water and sediment 

Sola and Prat (2006)a 

   

Effects of environmental parameters on the toxicity of metal mine discharges  

Water hardness and alkalinity Increased water hardness and alkalinity reduces metal toxicity in Chironomous tentans (Chironomidae) Gauss et al. (1985)c 

 Increasing water hardness reduces community sensitivity to metal contamination Gower et al. (1994)a 

 Increased water hardness reduces metal toxicity in Daphnia magna (Dapniidae) Yim et al. (2006)c 



Metal mixtures Abundance of heptageniidae, community respiration and macroinvertebrate drift were more sensitive to metal 

mixtures than single metal solutions 

Hickey and Golding (2002)c 

 Survival of Diplostomum spathaceum (Diplostomatidae) greater in metal mixtures than in single metal solutions Morley et al. (2002)c 

 Community sensitivity greatest in combined metal mixtures compared to single metal solutions Clements (2004)b 

Other parameters Increased turbidity reduces metal toxicity to Cladocera by decreasing bioavailability of metals Garcia-Garcia and Nandini (2006)c 

 Inverse correlation between salinity and lesion index of gills in Ruditapes philippinarum (Bivalvia) Riba et al. (2010)c 

 2257 

 2258 

 2259 

 2260 

 2261 

 2262 

 2263 

 2264 

 2265 

 2266 

 2267 



Table 4 Typology of common passive mine water treatment units and source control techniques: indicating the nature of mine 2268 

water drainage and the principal advantages and limitations of each method. 2269 

Name Mine water type Brief description Advantages Limitations Example reference(s) 

      

Passive mine water treatment technologies     

Aerobic wetlands Net alkaline 

ferruginous 

A system of shallow ponds, 

cascades and vegetated 

substrate encourage aeration 

of mine waters and oxidation, 

hydrolysis and precipitation of 

some heavy metals (mainly 

Fe and Al) 

Efficient Fe and Al removal; 

low maintenance 

requirement; cost-effective; 

easy integration into 

landscape and connection 

with existing ecosystems 

Not suitable for highly toxic, 

sulphate-rich and acidic mine 

waters; large land surface 

area requirement; occasional 

removal of substrate 

precipitates required 

Robb and Robinson (1995); 

Johnson and Hallberg (2005) 

Anaerobic wetlands Net acidic ferruginous 

with high sulphate 

concentrations 

A thick anoxic substrate of 

saturated organic material 

neutralises acidity and 

generates alkalinity through 

processes of bacterial 

Often used to neutralise 

acidity and generate alkalinity 

prior to discharge to aerobic 

wetlands; efficient Fe and 

sulphate removal; some toxic 

Not suitable for high toxic 

metal concentrations 

(especially Zn and Cd); large 

land surface area 

requirement; occasional 

Younger et al. (2002); 

Johnson and Hallberg (2005) 

 



sulphate reduction and calcite 

dissolution; heavy metals 

(mainly Fe and Al) are 

removed as precipitates 

metals are removed through 

precipitation of sulphides and 

adsorption to organic matter; 

low maintenance 

requirement; cost-effective; 

easy integration into 

landscape and connection 

with existing ecosystems 

removal of substrate 

precipitates required; requires 

high sulphate (>100 mg/l) 

concentrations; often produce 

hydrogen sulphide gas 

Anoxic Limestone 

Drains (ALDs) 

Net acidic, low Al and 

Fe, low dissolved 

oxygen concentrations 

Mine water is routed into a 

buried limestone trench which 

neutralises acidity and 

generates alkalinity 

Often used to neutralise 

acidity and generate alkalinity 

prior to discharge to aerobic 

wetlands; efficient Fe and Al 

removal at low concentrations 

(<2 mg/l) 

Not suitable for high toxic 

metal mine waters; vulnerable 

to precipitation of Al and Fe 

on limestone; only suitable for 

mine waters above pH 5 with 

low ferric Fe, Al (<2 mg/l) and 

dissolved oxygen content (<1 

mg/l) 

Nuttall and Younger (2000); 

Watzlaf et al. (2000) 

Oxic Limestone Drains Net acidic, low to An open (exposed to the Often used to neutralise Not suitable for high toxic Ziemkiewicz et al. (1997) 



(OLDs) moderate sulphate atmosphere) limestone 

trench which neutralises 

acidity and generates 

alkalinity  

 

acidity and generate alkalinity 

prior to discharge to aerobic 

wetlands; good rates of 

alkalinity generation with low 

water residence times; easy 

to construct and low cost 

alternative to more 

technically challenging and 

costly systems 

metal mine waters; high flow 

velocities required to prevent 

Fe and Al precipitation on the 

limestone 

Reducing and 

Alkalinity Producing 

Systems (RAPS) 

 

 

 

 

 

 

 

Net acidic 

 

 

 

 

 

 

 

 

 

 

A layer of limestone beneath 

a thick anoxic substrate of 

organic material neutralises 

acidity and generates 

alkalinity through processes 

of bacterial sulphate reduction 

and calcite dissolution; heavy 

metals (mainly Fe and Al) are 

Often used to neutralise 

acidity and generate alkalinity 

prior to discharge to aerobic 

wetlands; efficient Fe and 

sulphate removal; suitable for 

net acidic mine waters with 

high ferric Fe, Al and 

dissolved oxygen content (>1 

Not suitable for high toxic 

metal mine waters; requires 

significant hydraulic head 

 

 

 

 

 

 

 

Kepler and McCleary (1994); 

Jage et al. (2001) 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

removed as precipitates 

 

mg/l); low footprint  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Surface Catalyzed 

Oxidation Of Ferrous 

Iron (SCOOFI) 

Net alkaline 

ferruginous 

Containers are packed with 

high specific surface area 

inorganic media (e.g. plastic 

trickle filter, ochre, blast 

furnace slag) which 

encourage sorption and 

oxidation of ferrous Fe and 

accretion of ferric 

oxyhydroxide  

More efficient Fe removal 

than aerobic wetlands; low 

footprint 

Not suitable for high toxic 

metal mine waters; requires 

significant hydraulic head; 

requires regular cleaning and 

replacing of filtering media 

Younger (2000); Jarvis and 

Younger (2001); Sapsford 

and Williams (2009) 

     

Source control technologies and techniques     



Permeable reactive 

Barriers (PRBs) 

Net acidic PRBs provide a vertical and 

permeable compost-based 

medium in the path of 

polluted mine water which 

neutralises acidity and 

promotes the generation of 

alkalinity through bacterial 

sulphate reduction and calcite 

dissolution 

Useful for mine waters which 

do not emerge at the surface 

and instead travel as 

groundwater plumes  

Limited evidence for removal 

of toxic metals; limited by 

depth of aquifer 

Benner et al. (1997); Jarvis 

et al. (2006) 

Physical stabilisation 

of mine wastes 

- Covering of mine waste with 

inert material (e.g. clay, 

gravel) to reduce oxygen 

inflow and water ingress into 

the contaminated material 

and, hence, the 

concentrations of 

contaminants in drainage 

Immobilises contaminants at 

source and prevents 

generation of mine drainage 

Clay caps tend to crack in 

arid and semi-arid regions 

from wetting and drying 

cycles resulting in failure of 

air-tight cap 

Gandy and Younger (2003); 

Waygood and Ferriera 

(2009) 



waters 

Chemical stabilisation 

of mine wastes 

- Addition of a resinous 

adhesive to form a crust over 

the mine waste 

Immobilises contaminants at 

source and prevents 

generation of mine drainage 

Similar to clay caps, crusts 

are prone to cracking 

resulting in failure of air-tight 

cap 

Tordoff et al. (2000) 

Phytostabilisation - A vegetative cap on the mine 

waste to immobilise 

contaminants by adsorption 

and accumulation in the 

rhizosphere 

Immobilises contaminants at 

source and prevents 

generation of mine drainage; 

creates wildlife habitat 

Concerns over bioavailability 

of contaminants to wildlife; 

need for metal tolerant plants 

Mendez and Maier (2008); 

Pollmann et al. (2009) 

Phytoextraction - A vegetative cap on the mine 

waste to immobilise 

contaminants through 

hyperaccumulation in plant 

tissues  

Immobilises contaminants at 

source and prevents 

generation of mine drainage; 

creates wildlife habitat; offers 

the possibility of recovery of 

metals from plant tissues; 

improves land for agriculture 

Concerns over bioavailability 

of contaminants to wildlife 

Ernst (2005) 



and forestry use 
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