466 research outputs found

    Pylons ablaze: Examining the role of 5G COVID-19 conspiracy beliefs and support for violence

    Get PDF
    Amid increased acts of violence against telecommunication engineers and property, this pre‐registered study (N = 601 Britons) investigated the association between beliefs in 5G COVID‐19 conspiracy theories and the justification and willingness to use violence. Findings revealed that belief in 5G COVID‐19 conspiracy theories was positively correlated with state anger, which in turn, was associated with a greater justification of real‐life and hypothetical violence in response to an alleged link between 5G mobile technology and COVID‐19, alongside a greater intent to engage in similar behaviours in the future. Moreover, these associations were strongest for those highest in paranoia. Furthermore, we show that these patterns are not specific to 5G conspiratorial beliefs: General conspiracy mentality was positively associated with justification and willingness for general violence, an effect mediated by heightened state anger, especially for those most paranoid in the case of justification of violence. Such research provides novel evidence on why and when conspiracy beliefs may justify the use of violence

    Measurement of the Neutron Lifetime by Counting Trapped Protons in a Cold Neutron Beam

    Full text link
    A measurement of the neutron lifetime τn\tau_{n} performed by the absolute counting of in-beam neutrons and their decay protons has been completed. Protons confined in a quasi-Penning trap were accelerated onto a silicon detector held at a high potential and counted with nearly unit efficiency. The neutrons were counted by a device with an efficiency inversely proportional to neutron velocity, which cancels the dwell time of the neutron beam in the trap. The result is τn=(886.6±1.2[stat]±3.2[sys])\tau_{n} = (886.6\pm1.2{\rm [stat]}\pm3.2{\rm [sys]}) s, which is the most precise measurement of the lifetime using an in-beam method. The systematic uncertainty is dominated by neutron counting, in particular the mass of the deposit and the 6^{6}Li({\it{n,t}}) cross section. The measurement technique and apparatus, data analysis, and investigation of systematic uncertainties are discussed in detail.Comment: 71 pages, 20 figures, 9 tables; submitted to PR

    Dynamic subcanopy leaf traits drive resistance of net primary production across a disturbance severity gradient

    Get PDF
    Across the globe, the forest carbon sink is increasingly vulnerable to an expanding array of low- to moderate-severity disturbances. However, some forest ecosystems exhibit functional resistance (i.e., the capacity of ecosystems to continue functioning as usual) following disturbances such as extreme weather events and insect or fungal pathogen outbreaks. Unlike severe disturbances (e.g., stand-replacing wildfires), moderate severity disturbances do not always result in near-term declines in forest production because of the potential for compensatory growth, including enhanced subcanopy production. Community-wide shifts in subcanopy plant functional traits, prompted by disturbance-driven environmental change, may play a key mechanistic role in resisting declines in net primary production (NPP) up to thresholds of canopy loss. However, the temporal dynamics of these shifts, as well as the upper limits of disturbance for which subcanopy production can compensate, remain poorly characterized. In this study, we leverage a 4-year dataset from an experimental forest disturbance in northern Michigan to assess subcanopy community trait shifts as well as their utility in predicting ecosystem NPP resistance across a wide range of implemented disturbance severities. Through mechanical girdling of stems, we achieved a gradient of severity from 0% (i.e., control) to 45, 65, and 85% targeted gross canopy defoliation, replicated across four landscape ecosystems broadly representative of the Upper Great Lakes ecoregion. We found that three of four examined subcanopy community weighted mean (CWM) traits including leaf photosynthetic rate (p = 0.04), stomatal conductance (p = 0.07), and the red edge normalized difference vegetation index (p < 0.0001) shifted rapidly following disturbance but before widespread changes in subcanopy light environment triggered by canopy tree mortality. Surprisingly, stimulated subcanopy production fully compensated for upper canopy losses across our gradient of experimental severities, achieving complete resistance (i.e., no significant interannual differences from control) of whole ecosystem NPP even in the 85% disturbance treatment. Additionally, we identified a probable mechanistic switch from nutrient-driven to light-driven trait shifts as disturbance progressed. Our findings suggest that remotely sensed traits such as the red edge normalized difference vegetation index (reNDVI) could be particularly sensitive and robust predictors of production response to disturbance, even across compositionally diverse forests. The potential of leaf spectral indices to predict post-disturbance functional resistance is promising given the capabilities of airborne to satellite remote sensing. We conclude that dynamic functional trait shifts following disturbance can be used to predict production response across a wide range of disturbance severities

    Topology by Design in Magnetic nano-Materials: Artificial Spin Ice

    Full text link
    Artificial Spin Ices are two dimensional arrays of magnetic, interacting nano-structures whose geometry can be chosen at will, and whose elementary degrees of freedom can be characterized directly. They were introduced at first to study frustration in a controllable setting, to mimic the behavior of spin ice rare earth pyrochlores, but at more useful temperature and field ranges and with direct characterization, and to provide practical implementation to celebrated, exactly solvable models of statistical mechanics previously devised to gain an understanding of degenerate ensembles with residual entropy. With the evolution of nano--fabrication and of experimental protocols it is now possible to characterize the material in real-time, real-space, and to realize virtually any geometry, for direct control over the collective dynamics. This has recently opened a path toward the deliberate design of novel, exotic states, not found in natural materials, and often characterized by topological properties. Without any pretense of exhaustiveness, we will provide an introduction to the material, the early works, and then, by reporting on more recent results, we will proceed to describe the new direction, which includes the design of desired topological states and their implications to kinetics.Comment: 29 pages, 13 figures, 116 references, Book Chapte

    Increasing trends of soil greenhouse gas fluxes in Japanese forests from 1980 to 2009

    Get PDF
    Forest soils are a source/sink of greenhouse gases, and have significant impacts on the budget of these terrestrial greenhouse gases. Here, we show climate-driven changes in soil GHG fluxes (CO2 emission, CH4 uptake, and N2O emission) in Japanese forests from 1980 to 2009, which were estimated using a regional soil GHG model that is data-oriented. Our study reveals that the soil GHG fluxes in Japanese forests have been increasing over the past 30 years at the rate of 0.31 Tg C yr−2 for CO2 (0.23 % yr−1, relative to the average from 1980 to 2009), 0.40 Gg C yr−2 for CH4 (0.44 % yr−1), and 0.0052 Gg N yr−2 for N2O (0.27 % yr−1). Our estimates also show large interannual variations in soil GHG fluxes. The increasing trends and large interannual variations in soil GHG fluxes seem to substantially affect Japan's Kyoto accounting and future GHG mitigation strategies
    • 

    corecore