45 research outputs found

    Serological Prevalence of Schistosoma japonicum in Mobile Populations in Previously Endemic but Now Non-Endemic Regions of China: A Systematic Review and Meta-Analysis.

    Get PDF
    Background: Schistosomiasis japonica has been resurging in certain areas of China where its transmission was previously well controlled or interrupted. Several factors may be contributing to this, including mobile populations, which if infected, may spread the disease. A wide range of estimates have been published for S. japonicum infections in mobile populations, and a synthesis of these data will elucidate the relative risk presented from these groups. Methods: A literature search for publications up to Oct 31, 2014 on S. japonicum infection in mobile populations in previously endemic but now non-endemic regions was conducted using four bibliographic databases: China National Knowledge Infrastructure, WanFang, VIP Chinese Journal Databases, and PubMed. A meta-analysis was conducted by pooling one arm binary data with MetaAnalyst Beta 3.13. The protocol is available on PROSPERO (No. CRD42013005967). Results: A total of 41 studies in Chinese met the inclusion criteria, covering seven provinces of China. The time of post-interruption surveillance ranged from the first year to the 31st year. After employing a random-effects model, from 1992 to 2013 the pooled seroprevalence ranged from 0.9% (95% CI: 0.5-1.6%) in 2003 to 2.3% (95% CI: 1.5-3.4) in 1995; from the first year after the disease had been interrupted to the 31st year, the pooled seroprevalence ranged from 0.6% (95% CI: 0.2-2.1%) in the 27th year to 4.0% (95%CI: 1.3-11.3%) in the second year. The pooled seroprevalence in mobile populations each year was significantly lower than among the residents of endemic regions, whilst four papers reported a lower level of infection in the mobile populations than in the local residents out of only 13 papers which included this data. Conclusions: The re-emergence of S. japonicum in areas which had previously interrupted transmission might be due to other factors, although risk from re-introduction from mobile populations could not be excluded

    Phenotypic and genotypic monitoring of Schistosoma mansoni in Tanzanian schoolchildren five years into a preventative chemotherapy national control programme

    Get PDF
    We conducted combined in vitro PZQ efficacy testing with population genetic analyses of S. mansoni collected from children from two schools in 2010, five years after the introduction of a National Control Programme. Children at one school had received four annual PZQ treatments and the other school had received two mass treatments in total. We compared genetic differentiation, indices of genetic diversity, and estimated adult worm burden from parasites collected in 2010 with samples collected in 2005 (before the control programme began) and in 2006 (six months after the first PZQ treatment). Using 2010 larval samples, we also compared the genetic similarity of those with high and low in vitro sensitivity to PZQ

    Multi-parallel qPCR provides increased sensitivity and diagnostic breadth for gastrointestinal parasites of humans: field-based inferences on the impact of mass deworming

    Get PDF
    BACKGROUND: Although chronic morbidity in humans from soil transmitted helminth (STH) infections can be reduced by anthelmintic treatment, inconsistent diagnostic tools make it difficult to reliably measure the impact of deworming programs and often miss light helminth infections. METHODS: Cryopreserved stool samples from 796 people (aged 2-81 years) in four villages in Bungoma County, western Kenya, were assessed using multi-parallel qPCR for 8 parasites and compared to point-of-contact assessments of the same stools by the 2-stool 2-slide Kato-Katz (KK) method. All subjects were treated with albendazole and all Ascaris lumbricoides expelled post-treatment were collected. Three months later, samples from 633 of these people were re-assessed by both qPCR and KK, re-treated with albendazole and the expelled worms collected. RESULTS: Baseline prevalence by qPCR (n = 796) was 17 % for A. lumbricoides, 18 % for Necator americanus, 41 % for Giardia lamblia and 15% for Entamoeba histolytica. The prevalence was <1% for Trichuris trichiura, Ancylostoma duodenale, Strongyloides stercoralis and Cryptosporidium parvum. The sensitivity of qPCR was 98% for A. lumbricoides and N. americanus, whereas KK sensitivity was 70% and 32%, respectively. Furthermore, qPCR detected infections with T. trichiura and S. stercoralis that were missed by KK, and infections with G. lamblia and E. histolytica that cannot be detected by KK. Infection intensities measured by qPCR and by KK were correlated for A. lumbricoides (r = 0.83, p < 0.0001) and N. americanus (r = 0.55, p < 0.0001). The number of A. lumbricoides worms expelled was correlated (p < 0.0001) with both the KK (r = 0.63) and qPCR intensity measurements (r = 0.60). CONCLUSIONS: KK may be an inadequate tool for stool-based surveillance in areas where hookworm or Strongyloides are common or where intensity of helminth infection is low after repeated rounds of chemotherapy. Because deworming programs need to distinguish between populations where parasitic infection is controlled and those where further treatment is required, multi-parallel qPCR (or similar high throughput molecular diagnostics) may provide new and important diagnostic information

    New approaches to measuring anthelminthic drug efficacy: parasitological responses of childhood schistosome infections to treatment with praziquantel

    Get PDF
    By 2020, the global health community aims to control and eliminate human helminthiases, including schistosomiasis in selected African countries, principally by preventive chemotherapy (PCT) through mass drug administration (MDA) of anthelminthics. Quantitative monitoring of anthelminthic responses is crucial for promptly detecting changes in efficacy, potentially indicative of emerging drug resistance. Statistical models offer a powerful means to delineate and compare efficacy among individuals, among groups of individuals and among populations.; We illustrate a variety of statistical frameworks that offer different levels of inference by analysing data from nine previous studies on egg counts collected from African children before and after administration of praziquantel.; We quantify responses to praziquantel as egg reduction rates (ERRs), using different frameworks to estimate ERRs among population strata, as average responses, and within strata, as individual responses. We compare our model-based average ERRs to corresponding model-free estimates, using as reference the World Health Organization (WHO) 90 % threshold of optimal efficacy. We estimate distributions of individual responses and summarize the variation among these responses as the fraction of ERRs falling below the WHO threshold.; Generic models for evaluating responses to anthelminthics deepen our understanding of variation among populations, sub-populations and individuals. We discuss the future application of statistical modelling approaches for monitoring and evaluation of PCT programmes targeting human helminthiases in the context of the WHO 2020 control and elimination goals

    Behavioral changes in mice caused by Toxoplasma gondii invasion of brain

    Get PDF
    Toxoplasma gondii, a protozoan parasite, is capable of infecting a broad range of intermediate warm-blooded hosts including humans. The parasite undergoes sexual reproduction resulting in genetic variability only in the intestine of the definitive host (a member of the cat family). The parasite seems to be capable of altering the natural behavior of the host to favor its transmission in the environment. The aim of this study was to evaluate the number of parasite cysts formed in the hippocampus and amygdala of experimentally infected mice as these regions are involved in defense behaviors control and emotion processing, and to assess the influence of the infection on mice behavior. The obtained results revealed the presence of parasite cysts both in the hippocampus and the amygdala of infected mice; however, no clear region-dependent distribution was observed. Furthermore, infected mice showed significantly diminished exploratory activity described by climbing and rearing, smaller preference for the central, more exposed part of the OF arena and engaged in less grooming behavior compared to uninfected controls

    Two-year longitudinal survey reveals high genetic diversity of Schistosoma mansoni with adult worms surviving praziquantel treatment at the start of mass drug administration in Uganda

    Get PDF
    Background: A key component of schistosomiasis control is mass drug administration with praziquantel. While control interventions have been successful in several endemic regions, mass drug administration has been less effective in others. Here we focus on the impact of repeated praziquantel treatment on the population structure and genetic diversity of Schistosoma mansoni. Methods: We examined S. mansoni epidemiology, population genetics, and variation in praziquantel susceptibility in parasites isolated from children across three primary schools in a high endemicity region at the onset of the Ugandan National Control Programme. Children were sampled at 11 timepoints over two years, including one week and four weeks post-praziquantel treatment to evaluate short-term impacts on clearance and evidence of natural variation in susceptibility to praziquantel. Results: Prevalence of S. mansoni was 85% at baseline. A total of 3576 miracidia larval parasites, isolated from 203 individual children, were genotyped at seven loci. Overall, genetic diversity was high and there was low genetic differentiation, indicating high rates of parasite gene flow. Schistosome siblings were found both pre-treatment and four weeks post-treatment, demonstrating adult worms surviving treatment and natural praziquantel susceptibility variation in these populations at the beginning of mass drug administration. However, we did not find evidence for selection on these parasites. While genetic diversity decreased in the short-term (four weeks post-treatment), diversity did not decrease over the entire period despite four rounds of mass treatment. Furthermore, within-host genetic diversity was affected by host age, host sex, infection intensity and recent praziquantel treatment. Conclusions: Our findings suggest that praziquantel treatments have short-term impacts on these parasite populations but impacts were transient and no long-term reduction in genetic diversity was observed. High gene flow reduces the likelihood of local adaptation, so even though parasites surviving treatment were observed, these were likely to be diluted at the beginning of the Ugandan National Control Programme. Together, these results suggest that MDA in isolation may be insufficient to reduce schistosome populations in regions with high genetic diversity and gene flow

    The Neurotropic Parasite Toxoplasma Gondii Increases Dopamine Metabolism

    Get PDF
    The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s) responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists) and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans

    Designing antifilarial drug trials using clinical trial simulators

    Get PDF
    Lymphatic filariasis and onchocerciasis are neglected tropical diseases (NTDs) targeted for elimination by mass (antifilarial) drug administration. These drugs are predominantly active against the microfilarial progeny of adult worms. New drugs or combinations are needed to improve patient therapy and to enhance the effectiveness of interventions in persistent hotspots of transmission. Several therapies and regimens are currently in (pre-)clinical testing. Clinical trial simulators (CTSs) project patient outcomes to inform the design of clinical trials but have not been widely applied to NTDs, where their resource-saving payoffs could be highly beneficial. We demonstrate the utility of CTSs using our individual-based onchocerciasis transmission model (EPIONCHO-IBM) that projects trial outcomes of a hypothetical macrofilaricidal drug. We identify key design decisions that influence the power of clinical trials, including participant eligibility criteria and post-treatment follow-up times for measuring infection indicators. We discuss how CTSs help to inform target product profiles
    corecore