228 research outputs found

    Knee Kinematics Estimation Using Multi-Body Optimisation Embedding a Knee Joint Stiffness Matrix: A Feasibility Study

    Get PDF
    The use of multi-body optimisation (MBO) to estimate joint kinematics from stereophotogrammetric data while compensating for soft tissue artefact is still open to debate. Presently used joint models embedded in MBO, such as mechanical linkages, constitute a considerable simplification of joint function, preventing a detailed understanding of it. The present study proposes a knee joint model where femur and tibia are represented as rigid bodies connected through an elastic element the behaviour of which is described by a single stiffness matrix. The deformation energy, computed from the stiffness matrix and joint angles and displacements, is minimised within the MBO. Implemented as a “soft” constraint using a penalty-based method, this elastic joint description challenges the strictness of “hard” constraints. In this study, estimates of knee kinematics obtained using MBO embedding four different knee joint models (i.e., no constraints, spherical joint, parallel mechanism, and elastic joint) were compared against reference kinematics measured using bi-planar fluoroscopy on two healthy subjects ascending stairs. Bland-Altman analysis and sensitivity analysis investigating the influence of variations in the stiffness matrix terms on the estimated kinematics substantiate the conclusions. The difference between the reference knee joint angles and displacements and the corresponding estimates obtained using MBO embedding the stiffness matrix showed an average bias and standard deviation for kinematics of 0.9±3.2° and 1.6±2.3 mm. These values were lower than when no joint constraints (1.1±3.8°, 2.4±4.1 mm) or a parallel mechanism (7.7±3.6°, 1.6±1.7 mm) were used and were comparable to the values obtained with a spherical joint (1.0±3.2°, 1.3±1.9 mm). The study demonstrated the feasibility of substituting an elastic joint for more classic joint constraints in MBO

    Modeling the human tibio-femoral joint using ex vivo determined compliance matrices.

    Get PDF
    Several approaches have been used to devise a model of the human tibio-femoral joint for embedment in lower limb musculoskeletal models. However, no study has considered the use of cadaveric 6x6 compliance (or stiffness) matrices to model the tibio-femoral joint under normal or pathological conditions. The aim of this paper is to present a method to determine the compliance matrix of an ex vivo tibio-femoral joint for any given equilibrium pose. Experiments were carried out on a single ex vivo knee, first intact and, then, with the anterior cruciate ligament (ACL) transected. Controlled linear and angular displacements were imposed in single degree-of-freedom (DoF) tests to the specimen and resulting forces and moments measured using an instrumented robotic arm. This was done starting from seven equilibrium poses characterized by the following flexion angles: 0°, 15°, 30°, 45°, 60°, 75°and 90°. A compliance matrix for each of the selected equilibrium poses and for both the intact and ACL deficient specimen was calculated. The matrix, embedding the experimental load-displacement relationship of the examined DoFs, was calculated using a linear least squares inversion based on a QR decomposition, assuming symmetric and positive-defined matrices. Single compliance matrix terms were in agreement with the literature. Results showed an overall increase of the compliance matrix terms due to the ACL transection (2.6 ratio for rotational terms at full extension) confirming its role in the joint stabilization. Validation experiments were carried out by performing a Lachman test (the tibia is pulled forward) under load control on both the intact and ACL-deficient knee and assessing the difference (error) between measured linear and angular displacements and those estimated using the appropriate compliance matrix. This error increased non-linearly with respect to the values of the load. In particular, when an incremental posterior-anterior force up to 6 N was applied to the tibia of the intact specimen, the errors on the estimated linear and angular displacements were up to 0.6 mm and 1.5°, while for a force up to 18 N the errors were 1.5 mm and 10.5°, respectively. In conclusion, the method used in this study may be a viable alternative to characterize the tibio-femoral load-dependent behavior in several applications

    On the Fluctuation Relation for Nose-Hoover Boundary Thermostated Systems

    Full text link
    We discuss the transient and steady state fluctuation relation for a mechanical system in contact with two deterministic thermostats at different temperatures. The system is a modified Lorentz gas in which the fixed scatterers exchange energy with the gas of particles, and the thermostats are modelled by two Nos\'e-Hoover thermostats applied at the boundaries of the system. The transient fluctuation relation, which holds only for a precise choice of the initial ensemble, is verified at all times, as expected. Times longer than the mesoscopic scale, needed for local equilibrium to be settled, are required if a different initial ensemble is considered. This shows how the transient fluctuation relation asymptotically leads to the steady state relation when, as explicitly checked in our systems, the condition found in [D.J. Searles, {\em et al.}, J. Stat. Phys. 128, 1337 (2007)], for the validity of the steady state fluctuation relation, is verified. For the steady state fluctuations of the phase space contraction rate \zL and of the dissipation function \zW, a similar relaxation regime at shorter averaging times is found. The quantity \zW satisfies with good accuracy the fluctuation relation for times larger than the mesoscopic time scale; the quantity \zL appears to begin a monotonic convergence after such times. This is consistent with the fact that \zW and \zL differ by a total time derivative, and that the tails of the probability distribution function of \zL are Gaussian.Comment: Major revision. Fig.10 was added. Version to appear in Journal of Statistical Physic

    The Steady State Fluctuation Relation for the Dissipation Function

    Get PDF
    We give a proof of transient fluctuation relations for the entropy production (dissipation function) in nonequilibrium systems, which is valid for most time reversible dynamics. We then consider the conditions under which a transient fluctuation relation yields a steady state fluctuation relation for driven nonequilibrium systems whose transients relax, producing a unique nonequilibrium steady state. Although the necessary and sufficient conditions for the production of a unique nonequilibrium steady state are unknown, if such a steady state exists, the generation of the steady state fluctuation relation from the transient relation is shown to be very general. It is essentially a consequence of time reversibility and of a form of decay of correlations in the dissipation, which is needed also for, e.g., the existence of transport coefficients. Because of this generality the resulting steady state fluctuation relation has the same degree of robustness as do equilibrium thermodynamic equalities. The steady state fluctuation relation for the dissipation stands in contrast with the one for the phase space compression factor, whose convergence is problematic, for systems close to equilibrium. We examine some model dynamics that have been considered previously, and show how they are described in the context of this work.Comment: 30 pages, 1 figur

    Fluctuations in Nonequilibrium Statistical Mechanics: Models, Mathematical Theory, Physical Mechanisms

    Get PDF
    The fluctuations in nonequilibrium systems are under intense theoretical and experimental investigation. Topical ``fluctuation relations'' describe symmetries of the statistical properties of certain observables, in a variety of models and phenomena. They have been derived in deterministic and, later, in stochastic frameworks. Other results first obtained for stochastic processes, and later considered in deterministic dynamics, describe the temporal evolution of fluctuations. The field has grown beyond expectation: research works and different perspectives are proposed at an ever faster pace. Indeed, understanding fluctuations is important for the emerging theory of nonequilibrium phenomena, as well as for applications, such as those of nanotechnological and biophysical interest. However, the links among the different approaches and the limitations of these approaches are not fully understood. We focus on these issues, providing: a) analysis of the theoretical models; b) discussion of the rigorous mathematical results; c) identification of the physical mechanisms underlying the validity of the theoretical predictions, for a wide range of phenomena.Comment: 44 pages, 2 figures. To appear in Nonlinearity (2007

    Steady state fluctuation relation and time-reversibility for non-smooth chaotic maps

    Full text link
    Steady state fluctuation relations for dynamical systems are commonly derived under the assumption of some form of time-reversibility and of chaos. There are, however, cases in which they are observed to hold even if the usual notion of time reversal invariance is violated, e.g. for local fluctuations of Navier-Stokes systems. Here we construct and study analytically a simple non-smooth map in which the standard steady state fluctuation relation is valid, although the model violates the Anosov property of chaotic dynamical systems. Particularly, the time reversal operation is performed by a discontinuous involution, and the invariant measure is also discontinuous along the unstable manifolds. This further indicates that the validity of fluctuation relations for dynamical systems does not rely on particularly elaborate conditions, usually violated by systems of interest in physics. Indeed, even an irreversible map is proved to verify the steady state fluctuation relation.Comment: 23 pages,8 figure
    corecore