84 research outputs found

    Chiral Surface Waves for Enhanced Circular Dichroism

    Get PDF
    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.Comment: Added references. Corrected typos. Included new design for broadband chiral surface wave

    Statistical Characterization of Heterogeneous Dissolution Rates of Calcite from In situ and Real-Time AFM Imaging

    Get PDF
    Abstract The evolution of the surface topography of a calcite crystal subject to dissolution is documented through in situ real-time imaging obtained via atomic force microscopy (AFM). The dissolution process takes place by exposing the crystal surface to deionized water. AFM data allow detection of nucleation and expansion of mono- and multilayer rhombic etch pits and are employed to estimate the spreading rate of these structures. Spatially heterogeneous distributions of local dissolution rate are evaluated from the difference between topographic measurements taken at prescribed time intervals. We rest on a stochastic framework of analysis viewing the dissolution rate as a generalized sub-Gaussian (GSG) spatially correlated random process. Our analysis yields: (i) a quantitative assessment of the temporal evolution of the statistics of the dissolution rates as well as their spatial increments; (ii) a characterization of the degree of spatial correlation of dissolution rates and of the way this is linked to the various mechanisms involved in the dissolution process and highlighted through the experimental evidences. Our results indicate that the parameters driving the statistics of the GSG distribution and the spreading rate of the multilayer pits display a similar trend in time, thus suggesting that the evolution of these structures imprints the statistical features of local dissolution rates. Article Highlights We investigate dynamics of dissolution patterns on a calcite crystal in contact with deionized water via AFM imaging Temporal behavior of parameters of our statistical model is consistent with surface pattern evolution A nested model for the spatial correlation of rates embeds multiple mechanisms driving dissolution rate

    Ordered assembling of Co tetra phenyl porphyrin on oxygen-passivated Fe(001): from single to multilayer films

    Get PDF
    Tetra-phenyl prophyrins (TPP) are an interesting class of organic molecules characterized by a ring structure with a metal ion in their centre. An ordered growth of such molecules can be obtained even on metallic substrates by means of a proper modification of the reactive interface, as we demonstrated for ZnTPP molecules coupled to oxygen-passivated Fe(001) [G. Bussetti et al. Appl. Surf. Sci. 390, 856 (2016)]. More recently, we focused on CoTPP molecules, characterized by a not nil magnetic moment and therefore of potential interest for magnetic applications. As in the ZnTPP case, our results for one monolayer coverage report the formation of an ordered assembly of flat-lying molecules. However, some differences between the two molecular species are observed in the packing scheme and in the degree of electronic interaction with the substrate. With the aim of reaching, also for CoTPP, a comprehensive view of molecular organization on Fe, we complement here our previous investigations by following the growth of the CoTPP film for increasing coverage, showing that an ordered stacking of such molecules is indeed realized at least up to four molecular layers

    Evidence for cascaded third harmonic generation in non-centrosymmetric gold nanoantennas

    Full text link
    The optimization of nonlinear optical processes at the nanoscale is a crucial step for the development of nanoscale photon sources for quantum-optical networks. The development of innovative plasmonic nanoantenna designs and hybrid nanostructures to enhance optical nonlinearities in very small volumes represents one of the most promising routes. In such systems, the upconversion of photons can be achieved with high efficiencies via third-order processes, such as third harmonic generation (THG), thanks to the resonantly-enhanced volume currents. Conversely, second-order processes, such as second harmonic generation (SHG), are often inhibited by the symmetry of metal lattices and of common nanoantenna geometries. SHG and THG processes in plasmonic nanostructures are generally treated independently, since they both represent a small perturbation in the light-matter interaction mechanisms. In this work, we demonstrate that this paradigm does not hold in general, by providing evidence of a cascaded process in THG, which is fueled by SHG and sizably contributes to the overall yield. We address this mechanism by unveiling an anomalous fingerprint in the polarization state of the nonlinear emission from non-centrosymmetric gold nanoantennas and point out that such cascaded processes may also appear for structures that exhibit only moderate SHG yields - signifying its general relevance in plasmon-enhanced nonlinear optics. The presence of this peculiar mechanism in THG from plasmonic nanoantennas at telecommunication wavelengths allows gaining further insight on the physics of plasmon-enhanced nonlinear optical processes. This could be crucial in the realization of nanoscale elements for photon conversion and manipulation operating at room-temperature.Comment: 25 pages, 4 figure

    CVD Graphene/Ni Interface Evolution in Sulfuric Electrolyte

    Get PDF
    Systems comprising single and multilayer graphene deposited on metals and immersed in acid environments have been investigated, with the aim of elucidating the mechanisms involved, for instance, in hydrogen production or metal protection from corrosion. In this work, a relevant system, namely chemical vapor deposited (CVD) multilayer graphene/Ni (MLGr/Ni), is studied when immersed in a diluted sulfuric electrolyte. The MLGr/Ni electrochemical and morphological properties are studied in situ and interpreted in light of the highly oriented pyrolytic graphite (HOPG) electrode behavior, when immersed in the same electrolyte. Following this interpretative framework, the dominant role of the Ni substrate in hydrogen production is clarified

    Plasmon-enhanced second harmonic sensing

    Get PDF
    It has been recently suggested that the nonlinear optical processes in plasmonic nanoantennas allow for a substantial boost in the sensitivity of plasmonic sensing platforms. Here we present a sensing device based on an array of non-centrosymmetric plasmonic nanoantennas featuring enhanced second harmonic generation (SHG) integrated in a microfluidic chip. We evaluate its sensitivity both in the linear and nonlinear regime using a figure of merit (FOM = (ΔI/I)/Δn(\Delta I/I)/\Delta n) that accounts for the relative change in the measured intensity, \textit{I}, against the variation of the environmental refractive index \textit{n}. While the signal-to-noise ratio achieved in both regimes allows the detection of a minimum refractive index variation Δnmin≈10−3\Delta n_{min} \approx 10^{-3}, the platform operation in the nonlinear regime features a sensitivity (i.e. the FOM) that is at least 3 times higher than the linear one. Thanks to the surface sensitivity of plasmon-enhanced SHG, our results show that the development of such SHG sensing platforms with sensitivity performances exceeding those of their linear counterparts is within reach.Comment: 19 Pages, 5 Figure

    All optical sub diffraction multilevel data encoding onto azo polymeric thin films

    Full text link
    By exploiting photo-induced reorientation in azo-polymer thin films, we demonstrate all-optical polarization-encoded information storage with a scanning near-field optical microscope. In the writing routine, 5-level bits are created by associating different bit values to different birefringence directions, induced in the polymer after illumination with linearly polarized light. The reading routine is then performed by implementing polarization-modulation techniques on the same near-field microscope, in order to measure the encoded birefringence direction.Comment: 13 pages, 5 figure

    Empty electron states in cobalt-intercalated graphene

    Get PDF
    The dispersion of the electronic states of epitaxial graphene (Gr) depends significantly on the strength of the bonding with the underlying substrate. We report on empty electron states in cobalt-intercalated Gr grown on Ir(111), studied by angle-resolved inverse photoemission spectroscopy and x-ray absorption spectroscopy, complemented with density functional theory calculations. The weakly bonded Gr on Ir preserves the peculiar spectroscopic features of the Gr band structure, and the empty spectral densities are almost unperturbed. Upon intercalation of a Co layer, the electronic response of the interface changes, with an intermixing of the Gr π* bands and Co d states, which breaks the symmetry of π/σ states, and a downshift of the upper part of the Gr Dirac cone. Similarly, the image potential of Ir(111) is unaltered by the Gr layer, while a downward shift is induced upon Co intercalation, as unveiled by the image state energy dispersion mapped in a large region of the surface Brillouin zone
    • …
    corecore