1,680 research outputs found

    Jensen Shannon divergence as a measure of the degree of entanglement

    Get PDF
    The notion of distance in Hilbert space is relevant in many scenarios. In particular, distances between quantum states play a central role in quantum information theory. An appropriate measure of distance is the quantum Jensen Shannon divergence (QJSD) between quantum states. Here we study this distance as a geometrical measure of entanglement and apply it to different families of states.Comment: 5 pages, 2 figures, to appear in the special issue of IJQI "Noise, Information and Complexity at Quantum Scale", eds. S. Mancini and F. Marcheson

    Natural Metric for Quantum Information Theory

    Full text link
    We study in detail a very natural metric for quantum states. This new proposal has two basic ingredients: entropy and purification. The metric for two mixed states is defined as the square root of the entropy of the average of representative purifications of those states. Some basic properties are analyzed and its relation with other distances is investigated. As an illustrative application, the proposed metric is evaluated for 1-qubit mixed states.Comment: v2: enlarged; presented at ISIT 2008 (Toronto

    Jensen-Shannon divergence as a measure of distinguishability between mixed quantum states

    Full text link
    We discuss an alternative to relative entropy as a measure of distance between mixed quantum states. The proposed quantity is an extension to the realm of quantum theory of the Jensen-Shannon divergence (JSD) between probability distributions. The JSD has several interesting properties. It arises in information theory and, unlike the Kullback-Leibler divergence, it is symmetric, always well defined and bounded. We show that the quantum JSD (QJSD) shares with the relative entropy most of the physically relevant properties, in particular those required for a "good" quantum distinguishability measure. We relate it to other known quantum distances and we suggest possible applications in the field of the quantum information theory.Comment: 14 pages, corrected equation 1

    High-Voltage Energy Harvesting and Storage System for Internet of Things Indoor Application

    Get PDF
    On the path toward independence from fossil fuels, solar energy is the mostpromising solution, but it needs a robust and reliable storage system to face itsintrinsicfluctuations due to location, day cycle, and weather. The integrationbetween energy harvesting and storage (H&S) technologies is a must toward cleanenergy production, and it becomes even more appealing considering the possi-bility of producing electricity not only from direct sunlight but also from diffuselight and indoor illumination. Herein, a dye-sensitized solar module (DSSM)developed to harvest indoor illumination and directly store it into an electricaldouble-layer capacitor (EDLC) is presented. Five series-connected dye-sensitizedsolar cells are fabricated on the same substrate and the module is integrated with ahigh-voltage EDLC. The integrated device is characterized under indoor lightsources such as light emitting diodes andfluorescent lamps. The results show oneof the highest efficiencies ever reported for a high-voltage DSSM under indoorillumination (16.27%), the largest voltage window ever reported for an indoor H&Sdevice based on DSSM and EDLC—up to 3 V—and an overall photoelectricconversion and storage efficiency of 9.73% under indoor illumination

    Optimization of Laser-Induced Graphene Electrodes for High Voltage and Highly Stable Microsupercapacitors

    Get PDF
    Microsupercapacitors (ÎĽSCs) have received a lot of interest for their possible use in miniaturized electronics and in the field of the Internet of Things (IoT) to power distributed sensors. ÎĽSCs fill the gap between batteries and traditional capacitors, providing high power densities and acceptable energy densities to fulfill onboard power supply requirements, coupled with quick charge/discharge rates and extended lifetime. Charge balancing of ÎĽSCs is not a standard practice, although the optimization of electrodes can provide beneficial effects on the electrochemical performance and stability of the device. In this work, a charge-balanced double-layer ÎĽSC based on laser-induced graphene (LIG) with [PYR14][TFSI] as an ionic liquid electrolyte is presented for the first time. The optimized device shows an improvement in terms of the increased lifetime of a factor of four and its energy efficiency is raised above 80%

    Wootters' distance revisited: a new distinguishability criterium

    Full text link
    The notion of distinguishability between quantum states has shown to be fundamental in the frame of quantum information theory. In this paper we present a new distinguishability criterium by using a information theoretic quantity: the Jensen-Shannon divergence (JSD). This quantity has several interesting properties, both from a conceptual and a formal point of view. Previous to define this distinguishability criterium, we review some of the most frequently used distances defined over quantum mechanics' Hilbert space. In this point our main claim is that the JSD can be taken as a unifying distance between quantum states.Comment: 15 pages, 3 figures, changed content, added reference for last sectio
    • …
    corecore