556 research outputs found

    Changes in the structure of a New England (USA) kelp bed: the effect of an introduced species?

    Get PDF
    Since its first observation in the Gulf of Maine (Northwest Atlantic) in 1987, the epiphytic bryozoan Membranipora membranacea has become the dominant epiphyte on laminarian kelps. This note describes changes in the structure of a kelp bed at Cape Neddick (Mane, USA) after the coincident increase of M. membranacea, evaluates the potential causes of the observed changes, and documents the shortterm recovery of the kelp bed. Percent cover, length and density of kelps decreased significantly during 1989 through 1991 The dispersion of Laminaria spp. within the kelp bed was clumped on each sampling date at a large spatial scale (meters), while the distribution of Laminana spp. changed from a random pattern to a clumped d~stribut~on on a smaller spatial scale (0.25 m\u27). There were no consistent differences in storm intensity between years; densities of herbivores within the kelp bed were low and also have not changed between years. The coverage of M. membranacea on laminarian kelps increased 3-fold from 1989 to 1990, and the total coverage of other epiphytes decreased. It appears that the presence of M. membranacea on kelps has contributed to the defoliation of the kelp bed at Cape Neddick. This phenomenon may have important consequences to organisms that utilize kelps as habitat and shelter

    Palaeoproterozoic magnesite: lithological and isotopic evidence for playa/sabkha environments

    Get PDF
    Magnesite forms a series of 1- to 15-m-thick beds within the approximate to2.0 Ga (Palaeoproterozoic) Tulomozerskaya Formation, NW Fennoscandian Shield, Russia. Drillcore material together with natural exposures reveal that the 680-m-thick formation is composed of a stromatolite-dolomite-'red bed' sequence formed in a complex combination of shallow-marine and non-marine, evaporitic environments. Dolomite-collapse breccia, stromatolitic and micritic dolostones and sparry allochemical dolostones are the principal rocks hosting the magnesite beds. All dolomite lithologies are marked by delta C-13 values from +7.1 parts per thousand to +11.6 parts per thousand (V-PDB) and delta O-18 ranging from 17.4 parts per thousand to 26.3 parts per thousand (V-SMOW). Magnesite occurs in different forms: finely laminated micritic; stromatolitic magnesite; and structureless micritic, crystalline and coarsely crystalline magnesite. All varieties exhibit anomalously high delta C-13 values ranging from +9.0 parts per thousand to +11.6 parts per thousand and delta O-18 values of 20.0-25.7 parts per thousand. Laminated and structureless micritic magnesite forms as a secondary phase replacing dolomite during early diagenesis, and replaced dolomite before the major phase of burial. Crystalline and coarsely crystalline magnesite replacing micritic magnesite formed late in the diagenetic/metamorphic history. Magnesite apparently precipitated from sea water-derived brine, diluted by meteoric fluids. Magnesitization was accomplished under evaporitic conditions (sabkha to playa lake environment) proposed to be similar to the Coorong or Lake Walyungup coastal playa magnesite. Magnesite and host dolostones formed in evaporative and partly restricted environments; consequently, extremely high delta C-13 values reflect a combined contribution from both global and local carbon reservoirs. A C- 13-rich global carbon reservoir (delta C-13 at around +5 parts per thousand) is related to the perturbation of the carbon cycle at 2.0 Ga, whereas the local enhancement in C-13 (up to +12 parts per thousand) is associated with evaporative and restricted environments with high bioproductivity

    Long-Term Outcome of Patients With a Hematologic Malignancy and Multiple Organ Failure Admitted at the Intensive Care

    Get PDF
    Objectives: Historically, patients with a hematologic malignancy have one of the highest mortality rates among cancer patients admitted to the ICU. Therefore, physicians are often reluctant to admit these patients to the ICU. The aim of our study was to examine the survival of patients who have a hematologic malignancy and multiple organ failure admitted to the ICU. Design: This retrospective cohort study, part of the HEMA-ICU study group, was designed to study the survival of patients with a hematologic malignancy and organ failure after admission to the ICU. Patients were followed for at least 1 year. Setting: Five university hospitals in the Netherlands. Patients: One-thousand ninety-seven patients with a hematologic malignancy who were admitted at the ICU. Interventions: None. Measurements and Main Results: Primary outcome was 1-year survival. Organ failure was categorized as acute kidney injury, respiratory failure, hepatic failure, and hemodynamic failure; multiple organ failure was defined as failure of two or more organs. The World Health Organization performance score measured 3 months after discharge from the ICU was used as a measure of functional outcome. The 1-year survival rate among these patients was 38%. Multiple organ failure was inversely associated with long-term survival, and an absence of respiratory failure was the strongest predictor of 1-year survival. The survival rate among patients with 2, 3, and 4 failing organs was 27%, 22%, and 8%, respectively. Among all surviving patients for which World Health Organization scores were available, 39% had a World Health Organization performance score of 0-1 3 months after ICU discharge. Functional outcome was not associated with the number of failing organs. Conclusions: Our results suggest that multiple organ failure should not be used as a criterion for excluding a patient with a hematologic malignancy from admission to the ICU.</p

    Habitual intake of flavonoid subclasses and risk of colorectal cancer in two large prospective cohorts

    Get PDF
    Background: Flavonoids inhibit the growth of colon cancer cells in vitro. In a secondary analysis of a randomized controlled trial, the Polyp Prevention Trial, a higher intake of one sub-class, flavonols, was significantly associated with reduced risk of recurrent advanced adenoma. Most previous prospective studies on colorectal cancer evaluated only a limited number of flavonoid sub-classes and intake ranges, yielding inconsistent results.  Objective: To examine whether higher habitual dietary intakes of flavonoid subclasses (flavonols, flavones, flavanones, flavan-3-ols and anthocyanins) are associated with lower risk of colorectal cancer.  Design: Using data from validated food frequency questionnaires administered every four years and an updated flavonoid food composition database flavonoid intakes were calculated for 42,478 male participants from the Health Professionals Follow-up Study and for 76,364 female participants from the Nurses’ Health Study.  Results: During up to 26 years of follow-up, 2,519 colorectal cancer cases (1,061 in men, 1,458 in women) were documented. Intakes of flavonoid subclasses were not associated with risk of colorectal cancer in either cohort. Pooled multivariable adjusted relative risks (95% confidence interval) comparing the highest with the lowest quintile were 1.04 (0.91, 1.18) for flavonols; 1.01 (0.89, 1.15) for flavones; 0.96 (0.84, 1.10) for flavanones; 1.07 (0.95, 1.21) for flavan-3-ols; and 0.98 (0.81, 1.19) for anthocyanins (all p-values for heterogeneity by sex >0.19). In subsite analyses, flavonoid intake was also not associated with colon or rectal cancer risk.  Conclusion: Our findings do not support the hypothesis that a higher habitual intake of any flavonoid sub-class decreases the risk of colorectal cancer

    Urotensin receptor in GtoPdb v.2021.3

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 93]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 92]. Several structural forms of U-II exist in fish and amphibians [93]. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [2, 20, 63, 69, 72]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [61, 53, 10]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [86]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [93]

    Urotensin receptor in GtoPdb v.2023.1

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 94]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 93]. Several structural forms of U-II exist in fish and amphibians [94]. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [2, 20, 63, 69, 72]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [61, 53, 10]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [86]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [94]. The urotensinergic system displays an unprecedented repertoire of four or five ancient UT in some vertebrate lineages and five U-II family peptides in teleost fish [91]

    Urotensin receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The urotensin-II (U-II) receptor (UT, nomenclature as agreed by the NC-IUPHAR Subcommittee on the Urotensin receptor [26, 36, 89]) is activated by the endogenous dodecapeptide urotensin-II, originally isolated from the urophysis, the endocrine organ of the caudal neurosecretory system of teleost fish [7, 88]. Several structural forms of U-II exist in fish and amphibians. The goby orthologue was used to identify U-II as the cognate ligand for the predicted receptor encoded by the rat gene gpr14 [20, 62, 68, 70]. Human urotensin-II, an 11-amino-acid peptide [20], retains the cyclohexapeptide sequence of goby U-II that is thought to be important in ligand binding [53, 11]. This sequence is also conserved in the deduced amino-acid sequence of rat urotensin-II (14 amino-acids) and mouse urotensin-II (14 amino-acids), although the N-terminal is more divergent from the human sequence [19]. A second endogenous ligand for the UT has been discovered in rat [83]. This is the urotensin II-related peptide, an octapeptide that is derived from a different gene, but shares the C-terminal sequence (CFWKYCV) common to U-II from other species. Identical sequences to rat urotensin II-related peptide are predicted for the mature mouse and human peptides [32]. UT exhibits relatively high sequence identity with somatostatin, opioid and galanin receptors [89]
    corecore