67 research outputs found

    Co-evolution of genomes and plasmids within Chlamydia trachomatis and the emergence in Sweden of a new variant strain.

    Get PDF
    BACKGROUND: Chlamydia trachomatis is the most common cause of sexually transmitted infections globally and the leading cause of preventable blindness in the developing world. There are two biovariants of C. trachomatis: 'trachoma', causing ocular and genital tract infections, and the invasive 'lymphogranuloma venereum' strains. Recently, a new variant of the genital tract C. trachomatis emerged in Sweden. This variant escaped routine diagnostic tests because it carries a plasmid with a deletion. Failure to detect this strain has meant it has spread rapidly across the country provoking a worldwide alert. In addition to being a key diagnostic target, the plasmid has been linked to chlamydial virulence. Analysis of chlamydial plasmids and their cognate chromosomes was undertaken to provide insights into the evolutionary relationship between chromosome and plasmid. This is essential knowledge if the plasmid is to be continued to be relied on as a key diagnostic marker, and for an understanding of the evolution of Chlamydia trachomatis. RESULTS: The genomes of two new C. trachomatis strains were sequenced, together with plasmids from six C. trachomatis isolates, including the new variant strain from Sweden. The plasmid from the new Swedish variant has a 377 bp deletion in the first predicted coding sequence, abolishing the site used for PCR detection, resulting in negative diagnosis. In addition, the variant plasmid has a 44 bp duplication downstream of the deletion. The region containing the second predicted coding sequence is the most highly conserved region of the plasmids investigated. Phylogenetic analysis of the plasmids and chromosomes are fully congruent. Moreover this analysis also shows that ocular and genital strains diverged from a common C. trachomatis progenitor. CONCLUSION: The evolutionary pathways of the chlamydial genome and plasmid imply that inheritance of the plasmid is tightly linked with its cognate chromosome. These data suggest that the plasmid is not a highly mobile genetic element and does not transfer readily between isolates. Comparative analysis of the plasmid sequences has revealed the most conserved regions that should be used to design future plasmid based nucleic acid amplification tests, to avoid diagnostic failures

    Development of a transformation system for chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector

    Get PDF
    Chlamydia trachomatis remains one of the few major human pathogens for which there is no transformation system. C. trachomatis has a unique obligate intracellular developmental cycle. The extracellular infectious elementary body (EB) is an infectious, electron-dense structure that, following host cell infection, differentiates into a non-infectious replicative form known as a reticulate body (RB). Host cells infected by C. trachomatis that are treated with penicillin are not lysed because this antibiotic prevents the maturation of RBs into EBs. Instead the RBs fail to divide although DNA replication continues. We have exploited these observations to develop a transformation protocol based on expression of ?-lactamase that utilizes rescue from the penicillin-induced phenotype. We constructed a vector which carries both the chlamydial endogenous plasmid and an E.coli plasmid origin of replication so that it can shuttle between these two bacterial recipients. The vector, when introduced into C. trachomatis L2 under selection conditions, cures the endogenous chlamydial plasmid. We have shown that foreign promoters operate in vivo in C. trachomatis and that active ?-lactamase and chloramphenicol acetyl transferase are expressed. To demonstrate the technology we have isolated chlamydial transformants that express the green fluorescent protein (GFP). As proof of principle, we have shown that manipulation of chlamydial biochemistry is possible by transformation of a plasmid-free C. trachomatis recipient strain. The acquisition of the plasmid restores the ability of the plasmid-free C. trachomatis to synthesise and accumulate glycogen within inclusions. These findings pave the way for a comprehensive genetic study on chlamydial gene function that has hitherto not been possible. Application of this technology avoids the use of therapeutic antibiotics and therefore the procedures do not require high level containment and will allow the analysis of genome function by complementatio

    Inherent Structural Disorder and Dimerisation of Murine Norovirus NS1-2 Protein

    Get PDF
    Human noroviruses are highly infectious viruses that cause the majority of acute, non-bacterial epidemic gastroenteritis cases worldwide. The first open reading frame of the norovirus RNA genome encodes for a polyprotein that is cleaved by the viral protease into six non-structural proteins. The first non-structural protein, NS1-2, lacks any significant sequence similarity to other viral or cellular proteins and limited information is available about the function and biophysical characteristics of this protein. Bioinformatic analyses identified an inherently disordered region (residues 1–142) in the highly divergent N-terminal region of the norovirus NS1-2 protein. Expression and purification of the NS1-2 protein of Murine norovirus confirmed these predictions by identifying several features typical of an inherently disordered protein. These were a biased amino acid composition with enrichment in the disorder promoting residues serine and proline, a lack of predicted secondary structure, a hydrophilic nature, an aberrant electrophoretic migration, an increased Stokes radius similar to that predicted for a protein from the pre-molten globule family, a high sensitivity to thermolysin proteolysis and a circular dichroism spectrum typical of an inherently disordered protein. The purification of the NS1-2 protein also identified the presence of an NS1-2 dimer in Escherichia coli and transfected HEK293T cells. Inherent disorder provides significant advantages including structural flexibility and the ability to bind to numerous targets allowing a single protein to have multiple functions. These advantages combined with the potential functional advantages of multimerisation suggest a multi-functional role for the NS1-2 protein

    Expression of the murine norovirus (MNV) ORF1 polyprotein is sufficient to induce apoptosis in a virus-free cell model

    Get PDF
    Investigations into human norovirus infection, replication and pathogenesis, as well as the development of potential antiviral agents, have been restricted by the lack of a cell culture system for human norovirus. To date, the optimal cell culture surrogate virus model for studying human norovirus biology is the murine norovirus (MNV). In this report we generate a tetracycline-regulated, inducible eukaryotic cell system expressing the entire MNV ORF1 polyprotein. Once induced, the MNV ORF1 polyprotein was faithfully processed to the six mature non-structural proteins that predominately located to a discrete perinuclear region, as has been observed in active MNV infection. Furthermore, we found that expression of the ORF1 polyprotein alone was sufficient to induce apoptosis, characterised by caspase-9 activation and survivin down-regulation. This cell line provides a valuable new tool for studying MNV ORF1 non-structural protein function, screening for potential antiviral agents and acts as a proof-of-principle for such systems to be developed for human noroviruse

    Cloning of viral double-stranded RNA genomes

    No full text
    This chapter describes the cloning of viral double-stranded RNA genomes by single primer amplification. Several cloning strategies have been devised for viruses that possess segmented double-stranded (ds) RNA genomes. The chapter illustrates a circumstance that occurred in a laboratory during the characterization of a virus obtained from a fatal case of gastroenteritis in Bristol, England: the causative agent was later identified as a group C rotavirus. Several groups of rotaviruses are currently recognized based on the antigenic differences in the major inner shell protein and on the characteristic banding pattern of their 11 dsRNA genome segments. The single-primer amplification of viral dsRNA was developed to express the cloning atypical rotaviruses of unknown sequence directly from very small quantities of human fecal specimens. The human stool sample is an extremely hostile environment from which to extract undegraded RNA, but the successful cloning of all 11 genome segments of group C rotavirus RNA suggests that this method may be generally applicable to other dsRNA viruses from a variety of biological sources. The procedure can be divided into the following four sections: (1) purification and analysis of dsRNA from fecal samples; (2) radiolabeling and purification of primer 1; (3) ligation of primer 1 to dsRNA; and (4) cDNA synthesis and amplification by PCR

    Viral zoonoses and food of animal origin: caliciviruses and human disease

    No full text
    Caliciviruses are important veterinary and human pathogens. The viruses gain their name from characteristic cup-shaped structures seen on the virion surface by negative stain electron microscopy. In humans caliciviruses are a major cause of diarrhoeal disease. There are two fundamentally different genome structures amongst human caliciviruses. The Norwalk-like or small round structured viruses (SRSVs) are viruses that have an amorphous structure when viewed by EM, they have a genome composed of 3 major open reading frames (ORFs). These viruses cause epidemic gastroenteritis amongst all age groups. In contrast, the 'classic' human caliciviruses (HuCVs) display the typical calicivirus surface structure and have their capsid ORF fused to and contiguous with the non structural proteins forming one giant polyprotein. HuCVs are predominantly associated with paediatric infections and are only a minor cause of disease in humans. Spread of disease for both SRSVs and HuCVs is usually by faecal oral transmission. SRSVs are a major cause of foodborne gastroenteritis especially linked to the consumption of sewage-contaminated shellfish. However, there is no evidence that these viruses replicate in shellfish or that they originate from an animal source

    The molecular biology of human caliciviruses

    No full text
    Within the last decade molecular analyses of the genome of Norwalk-like viruses (NLVs) have confirmed that this important group of infectious agents belongs to the Caliciviridae family. NLVs have a positive-sense, single-stranded RNA genome of approximately 7700 nucleotides excluding the polyadenylated tail. The genome encodes three open reading frames: ORF 1 is the largest (approximately 1700 amino acids) and is expressed as a polyprotein precursor that is cleaved by the viral 3C-like protease; ORF 2 encodes the viral capsid (550 amino acids); and ORF 3 encodes a small basic protein of unknown function. Comparative sequencing studies of human caliciviruses have revealed a second distinct group of viruses known as Sapporo-like viruses (SLVs). SLVs also have a single-stranded, positive-sense RNA genome of approximately 7400 nucleotides and the small 3' terminal ORF (NLV-ORF3 equivalent) is retained. Phylogenetic analyses of NLV and SLV genomic sequences have assigned these viruses to two different genera with each genus comprised of two distinct genogroups. The fundamental difference in genome organization between NLVs and SLVs is that the polyprotein and capsid ORFs are contiguous and fused in SLVs. Progress in understanding the molecular biology of human caliciviruses is hampered by the lack of a cell culture system for virus propagation. Studies on viral replication and virion structure have therefore relied on the expression of recombinant virus proteins in heterologous systems. Norwalk virus capsid expressed in insect cells assembles to form virus-like particles (VLPs). Structural studies have shown that Norwalk virus VLPs are comprised of 90 dimers of the capsid protein

    Organization and expression of calicivirus genes

    No full text
    The application of molecular techniques to the characterization of caliciviruses has resulted in an extensive database of sequence information. This information has led to the identification of 4 distinct genera. The human enteric caliciviruses have been assigned to 2 of these genera. This division is reflected not only in sequence diversity but in a fundamental difference in genome organization. Complete genome sequences are now available for 5 enteric caliciviruses and demonstrate that human and animal enteric caliciviruses are phylogenetically closely related. Currently, there is no cell culture system for the human viruses; therefore, studies have relied on heterologous expression and in vitro systems. These studies have shown that in both human and animal viruses the viral nonstructural proteins are produced from a polyprotein precursor that is cleaved by a single viral protease. The purpose of this article is to provide an overview of the current knowledge of genome structure and gene expression in the enteric caliciviruses
    • …
    corecore