6 research outputs found

    Neuronal circuitry controlling circadian photoreception in Drosophila

    Get PDF
    Circadian clocks are endogenous timekeeping mechanisms, which give the sense of time-of-day to most organisms. To help the organisms to adapt to daily fluctuations in the environment, circadian clocks are reset by various environmental cues. Light is one of the cardinal environmental cues that synchronize circadian clocks. In a standard 12:12 light-dark condition, Drosophila exhibits bimodal activity pattern in the anticipation of lights-on and -off. The morning peak of activity is generated by Pigment Dispersing Factor (PDF) positive small ventro-lateral neurons (sLNvs) called the M-oscillators, while the evening peak of activity is generated by the dorsolateral neurons (LNds) and the 5th sLNv together referred to as the E-oscillators. Since the Drosophila circadian clock is extremely sensitive to light, a brief light exposure can robustly shift the phase of circadian behavior. The model for this resetting posits that circadian photoreception is cell-autonomous: the photoreceptor CRYPTOCHROME (CRY) senses light, binds to TIMELESS (TIM) and promotes its degradation via JETLAG (JET). However, it was more recently proposed that interactions between circadian neurons are also required for phase resetting. The goal of my thesis was to map the neuronal circuitry controlling circadian photoreception in Drosophila. In the first half of my dissertation (Chapter II), using a novel severe jetset mutant and JET RNAi, we identified M- and E-oscillators as critical light sensing neurons. We also found that JET functions cell-autonomously to promote TIM degradation in M- and E-oscillators, and non-autonomously in E-oscillators when expressed in M-oscillators. However, JET expression was required in both groups of neurons to phase-shift locomotor rhythms in response to light input. Thus M- and E-oscillators cooperate to shift circadian behavior in response to photic cues. In chapter III, unexpectedly, we found that light can delay or advance circadian behavior even when the M- or E-oscillators are genetically ablated or incapacitated suggesting that behavioral phase shifts in response to light are largely a consequence of cell autonomous light detection by CRY and governed by the molecular properties of the pacemaker. Nevertheless, neural interactions are integral in modulating light responses. The M-oscillator neurotransmitter, PDF was important in coordinating M- and E-oscillators for circadian behavioral response to light input. Moreover, we uncover a potential role for a subset of Dorsal neurons in control of phase advances specifically. Hence, neural modulation of cell autonomous light detection contributes to plasticity of circadian behavior and facilitates its adaptation to environmental inputs

    Neural Network Interactions Modulate CRY-Dependent Photoresponses in Drosophila

    Get PDF
    Light is one of the chief environmental cues that reset circadian clocks. In Drosophila, CRYPTOCHROME (CRY) mediates acute photic resetting of circadian clocks by promoting the degradation of TIMELESS in a cell-autonomous manner. Thus, even circadian oscillators in peripheral organs can independently perceive light in Drosophila However, there is substantial evidence for nonautonomous mechanisms of circadian photoreception in the brain. We have previously shown that the morning (M) and evening (E) oscillators are critical light-sensing neurons that cooperate to shift the phase of circadian behavior in response to light input. We show here that light can efficiently phase delay or phase advance circadian locomotor behavior in male Drosophila even when either the M- or the E-oscillators are ablated, suggesting that behavioral phase shifts and their directionality are largely a consequence of the cell-autonomous nature of CRY-dependent photoreception. Our observation that the phase response curves of brain and peripheral oscillators are remarkably similar further supports this idea. Nevertheless, the neural network modulates circadian photoresponses. We show that the M-oscillator neurotransmitter pigment dispersing factor plays a critical role in the coordination between M- and E-oscillators after light exposure, and we uncover a potential role for a subset of dorsal neurons in the control of phase advances. Thus, neural modulation of autonomous light detection might play an important role in the plasticity of circadian behavior.SIGNIFICANCE STATEMENT Input pathways provide circadian rhythms with the flexibility needed to harmonize their phase with environmental cycles. Light is the chief environmental cue that synchronizes circadian clocks. In Drosophila, the photoreceptor CRYPTOCHROME resets circadian clocks cell-autonomously. However, recent studies indicate that, in the brain, interactions between clock neurons are critical to reset circadian locomotor behavior. We present evidence supporting the idea that the ability of flies to advance or delay their rhythmic behavior in response to light input essentially results from cell-autonomous photoreception. However, because of their networked organization, we find that circadian neurons have to cooperate to reset the phase of circadian behavior in response to photic cues. Our work thus helps to reconcile cell-autonomous and non-cell-autonomous models of circadian entrainment

    miR-124 Regulates the Phase of Drosophila Circadian Locomotor Behavior

    Get PDF
    Animals use circadian rhythms to anticipate daily environmental changes. Circadian clocks have a profound effect on behavior. In Drosophila, for example, brain pacemaker neurons dictate that flies are mostly active at dawn and dusk. miRNAs are small, regulatory RNAs ( approximately 22 nt) that play important roles in posttranscriptional regulation. Here, we identify miR-124 as an important regulator of Drosophila circadian locomotor rhythms. Under constant darkness, flies lacking miR-124 (miR-124(KO)) have a dramatically advanced circadian behavior phase. However, whereas a phase defect is usually caused by a change in the period of the circadian pacemaker, this is not the case in miR-124(KO) flies. Moreover, the phase of the circadian pacemaker in the clock neurons that control rhythmic locomotion is not altered either. Therefore, miR-124 modulates the output of circadian clock neurons rather than controlling their molecular pacemaker. Circadian phase is also advanced under temperature cycles, but a light/dark cycle partially corrects the defects in miR-124(KO) flies. Indeed, miR-124(KO) shows a normal evening phase under the latter conditions, but morning behavioral activity is suppressed. In summary, miR-124 controls diurnal activity and determines the phase of circadian locomotor behavior without affecting circadian pacemaker function. It thus provides a potent entry point to elucidate the mechanisms by which the phase of circadian behavior is determined. SIGNIFICANCE STATEMENT: In animals, molecular circadian clocks control the timing of behavioral activities to optimize them with the day/night cycle. This is critical for their fitness and survival. The mechanisms by which the phase of circadian behaviors is determined downstream of the molecular pacemakers are not yet well understood. Recent studies indicate that miRNAs are important regulators of circadian outputs. We found that miR-124 shapes diurnal behavioral activity and has a striking impact on the phase of circadian locomotor behavior. Surprisingly, the period and phase of the neural circadian pacemakers driving locomotor rhythms are unaffected. Therefore, miR-124 is a critical modulator of the circadian output pathways that control circadian behavioral rhythms

    Morning and evening oscillators cooperate to reset circadian behavior in response to light input

    Get PDF
    Light is a crucial input for circadian clocks. In Drosophila, short light exposure can robustly shift the phase of circadian behavior. The model for this resetting posits that circadian photoreception is cell autonomous: CRYPTOCHROME senses light, binds to TIMELESS (TIM), and promotes its degradation, which is mediated by JETLAG (JET). However, it was recently proposed that interactions between circadian neurons are also required for phase resetting. We identify two groups of neurons critical for circadian photoreception: the morning (M) and the evening (E) oscillators. These neurons work synergistically to reset rhythmic behavior. JET promotes acute TIM degradation cell autonomously in M and E oscillators but also nonautonomously in E oscillators when expressed in M oscillators. Thus, upon light exposure, the M oscillators communicate with the E oscillators. Because the M oscillators drive circadian behavior, they must also receive inputs from the E oscillators. Hence, although photic TIM degradation is largely cell autonomous, neural cooperation between M and E oscillators is critical for circadian behavioral photoresponses

    Promoter–enhancer looping at the PPARγ2 locus during adipogenic differentiation requires the Prmt5 methyltransferase

    Get PDF
    PPARγ2 is a critical lineage-determining transcription factor that is essential for adipogenic differentiation. Here we report characterization of the three-dimensional structure of the PPARγ2 locus after the onset of adipogenic differentiation and the mechanisms by which it forms. We identified a differentiation-dependent loop between the PPARγ2 promoter and an enhancer sequence 10 kb upstream that forms at the onset of PPARγ2 expression. The arginine methyltransferase Prmt5 was required for loop formation, and overexpression of Prmt5 resulted in premature loop formation and earlier onset of PPARγ2 expression. Kinetic studies of regulatory factor interactions at the PPARγ2 promoter and enhancer revealed enhanced interaction of Prmt5 with the promoter that preceded stable association of Prmt5 with enhancer sequences. Prmt5 knockdown prevented binding of both MED1, a subunit of Mediator complex that facilitates enhancer–promoter interactions, and Brg1, the ATPase of the mammalian SWI/SNF chromatin remodeling enzyme required for PPARγ2 activation and adipogenic differentiation. The data indicate a dynamic association of Prmt5 with the regulatory sequences of the PPARγ2 gene that facilitates differentiation-dependent, three-dimensional organization of the locus. In addition, other differentiation-specific, long-range chromatin interactions showed Prmt5-dependence, indicating a more general role for Prmt5 in mediating higher-order chromatin connections in differentiating adipocytes.National Institutes of Health (NIH) [DK084278 to S.S., A.N.I., GM56244 to A.N.I., F32DK082263 to S.E.L., DK32520 to UMass Medical School Diabetes and Endocrine Research Center]. Funding for open access charge: Institutional funds
    corecore