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SUMMARY

Light is a crucial input for circadian clocks. In
Drosophila, short light exposure can robustly shift
the phase of circadian behavior. The model for this
resetting posits that circadian photoreception is
cell autonomous: CRYPTOCHROME senses light,
binds to TIMELESS (TIM), and promotes its degrada-
tion, which is mediated by JETLAG (JET). However, it
was recently proposed that interactions between
circadian neurons are also required for phase reset-
ting. We identify two groups of neurons critical for
circadian photoreception: the morning (M) and the
evening (E) oscillators. These neurons work syner-
gistically to reset rhythmic behavior. JET promotes
acute TIM degradation cell autonomously in M and
E oscillators but also nonautonomously in E oscilla-
tors when expressed in M oscillators. Thus, upon
light exposure, the M oscillators communicate with
the E oscillators. Because the M oscillators drive
circadian behavior, they must also receive inputs
from the E oscillators. Hence, although photic TIM
degradation is largely cell autonomous, neural
cooperation between M and E oscillators is critical
for circadian behavioral photoresponses.

INTRODUCTION

In Drosophila, the self-sustained pacemaker that generates

molecular and behavioral circadian rhythms is a negative tran-

scriptional feedback loop: PERIOD (PER) and TIMELESS (TIM)

repress CLOCK (CLK) and CYCLE (CYC), which are activators

of per and tim transcription (Zhang and Emery, 2012). This mech-

anism is present in approximately 150 brain neurons (Nitabach

and Taghert, 2008). In a standard 12-hr-light:12-hr-dark (LD)

cycle, Drosophila exhibits two peaks of activity. The morning

(M) peak is driven by the Pigment Dispersing Factor (PDF) posi-

tive small ventrolateral neurons (s-LNvs), also referred to as the

M oscillators (Grima et al., 2004; Stoleru et al., 2004). The

evening (E) peak is driven by six dorsolateral neurons (LNds),

two PDF negative s-LNvs called ‘‘fifth s-LNvs,’’ and perhaps a

few Dorsal Neurons (DN1s) (Cusumano et al., 2009; Grima

et al., 2004; Picot et al., 2007; Stoleru et al., 2004). These cells

are known as the E oscillators. The M oscillators also function

as pacemaker neurons: they maintain behavioral rhythms under

constant darkness (DD) and control their pace and phase (Renn

et al., 1999; Stoleru et al., 2005).

Circadian rhythms are only beneficial if they are synchronized

with the day/night cycle. Light is a crucial cue to entrain the

circadian clock. InDrosophila, a brief light pulse in the early night,

mimicking a delayed dusk, leads to a phase delay, whereas a

late-night light pulse resembling an early dawn causes a phase

advance (Levine et al., 1994). Light promotes rapid TIM degrada-

tion, which is critical to reset the circadian pacemaker and

behavioral rhythms (Suri et al., 1998; Yang et al., 1998). Upon

light exposure, the intracellular blue-light photoreceptor

CRYPTOCHROME (CRY) changes its conformation, binds to

TIM, and triggers its proteasomal degradation by recruiting a

JETLAG (JET)-containing E3 ubiquitin ligase (Busza et al.,

2004; Koh et al., 2006; Ozturk et al., 2011; Peschel et al., 2009).

Loss of CRY results in severe photoreception defects: light-

induced TIM degradation and behavioral phase shifts are

abolished (Dolezelova et al., 2007; Lin et al., 2001; Stanewsky

et al., 1998). cry mutant flies also remain rhythmic in constant

light (LL), whereas wild-type flies are arrhythmic under these

conditions (Emery et al., 2000). Two jet mutants (jetc and jetr)

are also rhythmic in LL (Koh et al., 2006; Peschel et al., 2006).

However, this and other circadian photoresponse phenotypes

are only observed in flies carrying the long-short tim variant (ls-

tim) (Rosato et al., 1997). The long TIM isoform encoded by

this variant has reduced affinity for CRY, making flies much

less sensitive to light compared to flies carrying the short tim

allele (s-tim) (Sandrelli et al., 2007). Thus, although JET promotes

TIM degradation, whether it is actually required for TIM degrada-

tion and circadian photoresponses remains to be determined.

Although strong evidence supports a cell-autonomous model

for circadian photoreception, recent studies indicate that such a

mechanism is not sufficient to explain photic resetting of circa-

dian behavior. Indeed, TIM degradation in M oscillators appears

to be neither necessary nor sufficient for phase delays (Tang

et al., 2010). Based on the pattern of TIM degradation at

Zeitgeber Time (ZT) 15, it was proposed that the DN1s would

be important for phase delays (Tang et al., 2010). Moreover,

the large (l)-LNvs have been implicated in phase advances

(Shang et al., 2008). Ultimately, the DN1s and the l-LNvs would
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have to communicate with the M oscillators, because these cells

drive circadian behavior in DD, the condition in which phase is

measured after exposing flies to a light pulse. Neuronal circuits

would thus be important for circadian behavioral photores-

ponses. Acute TIM degradation in CRY-negative LNds also

indicates the existence of nonautonomous photoreceptive

mechanisms in the brain (Yoshii et al., 2008).

We used a severe jetmutant and jet RNAi to map the neuronal

circuits controlling circadian photoreception. Our results indi-

cate that both cell-autonomous and nonautonomous photore-

ception take place within the circadian neural network, and

that theMand E oscillators are crucial for sensing light and reset-

ting circadian locomotor behavior.

RESULTS

The jetset Mutation Profoundly Disrupts Circadian
Photoresponses
In a screen for mutants affecting Drosophila circadian behavior,

we identified a strain that remains robustly rhythmic in LL (Fig-

ure 1A; Table S1). This mutant did not complement jetc and jetr

(Table S1), and a point mutation causing a threonine to isoleucine

substitution in JET’s leucine-rich repeats (LRR) was identified

(Figure 1B). However, although jetc and jetr show circadian light

response defects only with ls-tim (Koh et al., 2006; Peschel et al.,

2006), our mutant carries the highly light-sensitive s-tim

allele (Sandrelli et al., 2007). It is thus a much more severe

Figure 1. Identification and Characterization of jetset

(A) y w; jetset flies are rhythmic under LL. Representative double-plotted actograms of y w, cryb, and y w; jetset flies. (White indicates the light phase, and gray

indicates the dark phase.)

(B) Sequence alignment of the LRR region of insect JET proteins. The blue box indicates the jetset mutation.

(C) Behavioral phase shifts after short light pulses are profoundly disrupted in jetset mutants. Phase delays and advances are plotted as negative and positive

values, respectively. Phase shifts were almost completely abolished compared to control (y w) flies. Phase shifting defects were fully rescued by expression of

UAS-jet with tim-GAL4. For each experiment, sixteen flies were used per genotype, n = 3. Error bars correspond to SEM. ***p < 0.001, n.s., not significant at the

0.05 level as determined by one-way analysis of variance (ANOVA) coupled to post hoc Tukey’s test for multiple comparisons, F(5, 12) = 121.9 with p < 0.0001.

(D) jetset is defective for acute TIM degradation in response to short light pulses. Upper panel: representative western blot showing TIM degradation after light

pulse in y w and y w; jetset. A light pulse (LP) was given at ZT21 and nonlight pulsed (NLP) flies were used as controls. Lower panel: quantification of TIM levels.

Upon light pulse, y w flies showed about 50% TIM degradation, whereas jetset did not show any obvious TIM degradation. n = 3. For each genotype the LP values

are normalized to their NLP control values. Data are plotted asmean ±SEM, *p < 0.05; n.s., not significant as determined by comparing the LP andNLP groups for

each genotype by Student’s t test.

(E) TIM oscillations in jetset are dampened under LD conditions. Upper panel: representative western blots showing TIM oscillation in whole heads at indicated ZT

times under a LD cycle. The white bars represent the day, and the black bars represent the night. TIM levels were normalized to the SPECTRIN levels. n = 5. Lower

panel: quantification of TIM levels. TIM expression levels for y w at ZT17 were set to 1, and other values were normalized to it. Data represent mean ± SEM.
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loss-of-function mutant, which was named jetset. Furthermore,

jetset flies showed almost no behavioral phase shifts when chal-

lenged with 5 min light pulses applied early (ZT15) or late (ZT21)

at night. Phase shift defects were fully rescued by expression of

wild-type JET driven by tim-GAL4, a pan-circadian driver (Fig-

ure 1C) (Kaneko et al., 2000). The mutation in the jet gene is

thus responsible for jetset’s defective photoresponses. TIM

undergoes acute light-dependent degradation after short light

pulses at night and oscillates robustly under LD cycles (reviewed

in Zhang and Emery, 2012). TIM did not degrade after a light

pulse at ZT21 in jetset mutants (Figure 1D). However, TIM cycling

under LDwas not abolished, although its amplitude was reduced

(Figure 1E). This is probably because JETSET retains residual

activity detectable with long exposure to light. Thus, we

conclude that both molecular and behavioral circadian photo-

responses are affected by jetset. JET is therefore critical for

CRY-dependent circadian behavioral photoresponses and for

acute TIM degradation.

JET Expression in M and E Oscillators Controls
Light-Dependent Phase Resetting
Given its severe phase response defects, we used jetset to

map the neural circuit controlling circadian entrainment.

GAL4 drivers active in potentially relevant circadian neurons

were used to express wild-type JET in jetset flies. When we ex-

pressed JET with Clk4.1M-GAL4 (Zhang et al., 2010) only in

posterior DN1s, proposed to play a role in phase delays

(Tang et al., 2010), or with c929-GAL4 (Grima et al., 2004) spe-

cifically in the l-LNvs, which are important for phase advances

(Shang et al., 2008), phase responses were not rescued, sug-

gesting that these neurons are not sufficient to reset locomotor

behavior (Figure 2A). However, JET expression in both M and

E oscillators with Mai179-GAL4 (Grima et al., 2004) completely

restored phase shifts in jetset flies. This indicates that JET

expression in these two groups of neurons is critical to phase

resetting. To determine the individual contribution of the M and

E oscillators, we expressed JET only in PDF-positive LNvs

(M oscillators and l-LNvs) with Pdf-GAL4 (Renn et al., 1999).

We could only slightly improve the phase delays. Phase

advances were not rescued at all. We then combined

Mai179-GAL4 with Pdf-GAL80 (Stoleru et al., 2004) to express

JET only in the E oscillators. Unexpectedly, this also could not

rescue phase shifts (Figure 2A). Hence, JET must be rescued

in both M and E oscillators for circadian behavior to be respon-

sive to light pulses.

Mai179-GAL4 is weakly expressed in four DN1s (Picot et al.,

2007) (Figure S2A). To determine if these neurons are required

for phase shifts, we used DvPdf-GAL4, which is expressed in

the M oscillators, l-LNvs, and a subset ofMai179-GAL4 positive

E oscillators, but not in the DN1s (Bahn et al., 2009) (Figure S2B).

This driver rescues the E-peak of activity in per0 flies (F. Guo and

M. Rosbash, personal communication). We could rescue the

Figure 2. JET Expression in the M and E

Oscillators Is Critical for Circadian Photo-

responses

(A) JET expression in the M and E oscillators is

sufficient to rescue both phase delay and advance

defects in jetset. Phase shift in response to light

pulse at ZT 15 is shown on the left and the phase

shift at ZT21 is shown on the right. All genotypes

were compared to y w control. Note that both phase

delay (ZT15) and advance (ZT21) were completely

rescued only when wild-type JET is expressed in

both the M and E- oscillators using the Mai179-

GAL4 driver. With Pdf-GAL4, partial rescue was

observed at ZT15 (see also Figure S1B). Sixteen

flies per genotype were used, and each experiment

was repeated at least four times. Error bars repre-

sent SEM. ***p < 0.001; *p < 0.05; n.s., not signifi-

cant at the 0.05 level as determined by ANOVA

coupled to post hoc Tukey’s test, F(6, 33) = 24.77 for

phase delay and F(6, 33) = 21.54 for phase advance

with p < 0.0001. See also Figure S1 for additional

controls.

(B) Knocking down JET expression in the M and E

oscillators disrupts phase shifts. Phase delays are

plotted on the left and advances on the right. The

controls are the different GAL4 driver lines crossed

to y w. All the GAL4 drivers were combined with

UAS-Dcr2 to enhance RNAi (Dietzl et al., 2007).

Each genotype is compared to its GAL4 driver

control. ***p < 0.001; **p < 0.01; n.s., not significant

at the 0.05 level, tested using Student’s t test. See

Figure S2 for additional experiments.
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phase shifting defects of jetsetwith this driver (Figure S2C). Thus,

the DN1s are not required for JET-dependent phase shifts.

To ensure that our identification of the M and E oscillators as

key neurons for circadian light responses was not the result of

a gain of function from JET overexpression, we downregulated

JET with RNAi (Figure 2B). Consistent with our rescue data,

JET knockdown in both M and E oscillators severely reduced

the amplitude of phase delays and advances. This was observed

with Mai179-GAL4 and DvPdf-GAL4 (Figures 2B and S2C). The

effects of JET downregulation were more evident at ZT15, prob-

ably because CRY levels are lower at this time point (Emery et al.,

1998; Yoshii et al., 2008), and flies are thus more sensitive to JET

downregulation. Because both Mai179-GAL4 and DvPdf-GAL4

are expressed in l-LNvs (Bahn et al., 2009; Grima et al., 2004)

(Figures S2A and S2B), we also knocked down JET specifically

in the l-LNvs with c929-GAL4 (Figure S2C). No effects on phase

delays and advances were observed. Thus, JET expression in

the l-LNvs is neither necessary nor sufficient for phase shifts.

The M and E oscillators are therefore essential for behavioral

phase shifts.

Also in agreement with our rescue experiments, knocking

down JET only in PDF-positive neurons reduced the amplitude

of phase shifts, although not to the same degree as knocking

down JET in both groups, probably because RNAi does not

reduce JET activity as efficiently as the jetset mutation. Surpris-

ingly, when we knocked down JET only in the E oscillators, no

effect on phase responses was observed (see explanation

below). Importantly however, the impact of downregulating

JET in both M and E oscillators on phase shifts is greater than

the sum of the effects of knocking down JET in the M and E

oscillators separately. Thus, both our rescue and RNAi

approaches reveal that the M and E oscillators collaborate to

reset circadian locomotor behavior.

JET Controls Photic TIM Degradation Cell
Autonomously in M and E Oscillators but Also
Nonautonomously in E Oscillators
To understand our rescue and RNAi results, we measured TIM

degradation after light pulses at ZT15 and 21 in the M and E

oscillators. In jetset mutants, TIM degradation was abolished in

the M oscillators (Figures 3A, 3B, and S3A). JET rescue in the

M oscillators with both Mai179-GAL4 and Pdf-GAL4 restored

photic TIM degradation in these cells. However, expressing

JET only in the E oscillators did not. JET downregulation

restricted to the M oscillators inhibited TIM degradation in M

cells, but E oscillator downregulation had no effect (Figures

3C, 3D, and S3B). Knocking down JET using Mai179-GAL4

also blocked TIM degradation in the M oscillators, but less

severely than with Pdf-GAL4, probably because Mai179-GAL4,

a weaker driver than Pdf-GAL4 (data not shown), is less effective

in reducing JET activity. Taken together, these results show that

JET acts cell autonomously to trigger TIM degradation in M

oscillators.

In the E oscillators of jetset flies, TIM degradation was also

eliminated and rescued by JET expression in these cells, further

supporting the cell-autonomous role of JET in TIM degradation

(Figures 4A, 4B, and S3A). Unexpectedly, however, JET expres-

sion restricted to the M oscillators rescued partially, but signifi-

cantly, TIM degradation in the E oscillators. These results indi-

cate that JET can function nonautonomously when expressed

in the M oscillators. Moreover, TIM degradation appears to be

rescued in most LNds when using Mai179-GAL4, even though

this driver is expressed in only three of the six LNds (Grima

et al., 2004; Picot et al., 2007) (Figures 4A and S4). Indeed, the

intensity of TIM signal in individual light-pulsed LNds overlapped

only with that observed in 12% of LNds in nonpulsed control

(Figure S4). Similar results were obtained even when Mai179-

GAL4 was combined with Pdf-GAL80. This suggests that JET

in the E oscillators can nonautonomously trigger TIM degrada-

tion in the three Mai179-GAL4-negative LNds. Downregulating

JET in the M and E oscillators with Mai179-GAL4 attenuated

TIM degradation in the E oscillators (Figures 4C, 4D, and S3B).

Interestingly, TIM degradation appeared to be compromised in

most LNds (Figures 4C and S4). This suggests again that the

Mai179-GAL4-negative LNds, which express low or no CRY

(Yoshii et al., 2008), rely predominantly on a JET-dependent

nonautonomous mechanism to degrade TIM.

Importantly, downregulating JET with Mai179-GAL4 did not

completely block TIM degradation in the E oscillators (Figures

4C, 4D, and S3B), whereas the jetset mutation did. Thus, the E

oscillators retained residual JET activity in jet RNAi flies. This

explains an apparent paradox in our behavioral results. On one

hand, rescuing JET expression in M oscillators only weakly

rescues phase shifts in jetset flies. On the other hand, downregu-

lating JET specifically in E oscillators has no effect on phase

shifts. In the latter case, residual JET activity in E oscillators

and nonautonomous JET activity from M oscillators result in

full TIM degradation in E oscillators. Hence, normal phase shifts

are observed. In the former situation, nonautonomous JET activ-

ity from theM oscillators is not sufficient to trigger full TIM degra-

dation, because there is not enough autonomous JET activity in

E oscillators. Thus, phase shifts are poorly rescued. This

illustrates the importance of both autonomous and nonautono-

mous JET activity, and the role played by interactions between

M and E oscillators in circadian photoreception.

DISCUSSION

Circadian photoreception is based on a cell-autonomous mech-

anism. However, recent studies indicate that resetting circadian

behavior in response to light input requires neural interactions

(Shang et al., 2008; Tang et al., 2010). Our results show that the

M and E oscillators are critical for circadian photoresponses

andact synergistically to shift the timingof the locomotor rhythms

in response to light. Indeed JET is required in both the M and E

oscillators, whereas, individually, these neuronal groups cannot,

or only weakly, phase-shift locomotor rhythms. Moreover, JET

promotes both cell-autonomous and nonautonomous acute

TIM degradation in circadian neurons. Thus, circadian behavior

relies heavily on network interactions during its photic resetting.

The identification of the E oscillators as critical cells for both

phase delays and advances was unexpected. Indeed, the

DN1s were proposed to be important for phase delays (Tang

et al., 2010), and the l-LNvs were found to be needed for phase

advances (Shang et al., 2008). However, our experiments indi-

cate that JET is neither required, nor sufficient in DN1s and

604 Cell Reports 7, 601–608, May 8, 2014 ª2014 The Authors



l-LNvs for phase shifts. The l-LNvs might thus secrete a neuro-

transmitter in a JET-independent manner, and this only happens

when the light pulse is administered late at night.

Our finding that JET in the M oscillators can nonautonomously

trigger TIM degradation in the E oscillators was also unantici-

pated. How JET does so is unclear, but it must involve rapid

communication between the M and E oscillators, because we

measured TIM degradation only 1 hr after the light pulse. JET

might regulate acutely neuronal activity, possibly with CRY’s

help. Indeed, this photoreceptor influences neuronal activity in

a light-dependent manner and is required for phase shifts in

M oscillators (Fogle et al., 2011; Tang et al., 2010). Interestingly,

the reverse is not true: JET in the E oscillators has no effect on

TIM degradation in the M oscillators. Because the E oscillators

are essential for phase shifts and theMoscillators drive circadian

behavior (Stoleru et al., 2005), the formers have to communicate

with the latters through a JET-independent mechanism.

Although JET in the E oscillators cannot promote TIM degrada-

tion in M oscillators, our rescue experiments suggest that it

can do so in the Mai179-GAL4-negative LNds. Indeed,

JET expression restricted to the E oscillators restored TIM

degradation in most LNds (Figure S4). In addition, JET expres-

sion in M oscillators promoted TIM degradation in most LNds

as well. The non-E oscillator LNds are CRY negative, which

Figure 3. Cell-Autonomous Role of JET in M Oscillators

(A) Representative confocal images showing TIM degradation inM oscillators of jetset flies rescued in M- and/or E oscillators after a light pulse at ZT21. The brains

were stained with anti-TIM antibody (red) and anti-PDF antibody (blue). LP represents light pulse, whereas NLP means no light pulse. From left to right, fly

genotypes are (1) jetset, (2)Mai179-Gal4, jetset/jetset;UAS-jet/+, (3) Pdf-Gal4, jetset/jetset;UAS-jet/+, (4)Mai179-Gal4, jetset/jetset; UAS-jet/Pdf-GAL80. Scale bars,

10 mm.

(B) Quantifications of TIM level. The y axis shows the relative TIM level in M oscillators, normalized to NLP controls for each genotype. Error bars correspond to

SEM. n.s., no significance, ****p < 0.0001 was determined by t test.

(C) Representative confocal images showing TIM degradation inM oscillators when JET double-stranded RNAs are expressed inM and/or E oscillators. From left

to right, fly genotypes are (1) Mai179-Gal4/ UAS-Dcr2, (2) Mai179-Gal4/ UAS-Dcr2; jetRNAi/+, (3) Pdf-Gal4/ UAS-Dcr2; jetRNAi/+, (4) Mai179-Gal4/ UAS-Dcr2;

jetRNAi/Pdf-GAL80.

(D) Quantifications of TIM level. y axis shows the relative TIM level in M oscillators, normalized to NLP controls. Error bars correspond to SEM. n.s., no signif-

icance, *p < 0.05, ****p < 0.0001 was determined by t test. See also Figure S3 for the similar results obtained at ZT15.
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suggests that they rely on a nonautonomous mechanism for TIM

degradation (Yoshii et al., 2008). Our results indicate that JET’s

nonautonomous function in TIM degradation might be critical

to spread light information broadly in the circadian neural

network.

Strong evidence supports the idea that acute TIM degradation

is required for circadian behavioral photoresponses (Suri et al.,

1998; Yang et al., 1998). However, a recent study has challenged

the notion that TIM degradation in M oscillators is critical for

phase shifts, or at least for phase delays (Tang et al., 2010).

Our results suggest that TIM degradation is critical in E oscilla-

tors, whether it is achieved cell autonomously or not, because

partial block of TIM degradation in E oscillators is associated

with compromised phase advances and delays (Figures 2 and

4; Table S2). In the M oscillators, the requirement for TIM degra-

dation remains uncertain. On one hand, JET is required in these

neurons and promotes TIM degradation cell autonomously. On

the other hand, this JET-dependent TIM degradation could be

unnecessary for behavioral phase shifts: JET in M oscillators

could contribute to phase shifts entirely nonautonomously. We

note that TIM degradation is severely blocked in M oscillators

when JET is downregulated, but phase delays are only partially

disrupted (Table S2). This would fit with the idea that TIM degra-

dation in M oscillators is not required for phase shifts, although

Figure 4. Cell-Autonomous and Nonautonomous Role of JET in E Oscillators

(A) Representative confocal images showing TIM degradation in LNds of jetset flies rescued in M and/or E oscillators, after a light pulse at ZT21. The brains were

stained with anti-TIM antibody (red) and anti-PER antibody (green). From left to right, fly genotypes are (1) jetset, (2)Mai179-Gal4, jetset/jetset; UAS-jet/+, (3) Pdf-

Gal4, jetset/jetset; UAS-jet/+, (4) Mai179-Gal4, jetset/jetset; UAS-jet/Pdf-GAL80. Scale bars, 10 mm.

(B) Quantifications of TIM level. y axis shows the relative TIM level in LNds, normalized to the NLP controls. Error bars correspond to SEM. ****p < 0.0001 was

determined by t test. Note that TIM is degraded in the LNds of Pdf-Gal4, jetset/jetset; UAS-jet/+ flies, even though JET is only expressed in M oscillators (see also

Figure S3C for additional controls).

(C) Representative confocal images showing TIMdegradation in LNdswhen JET double-stranded RNAs are expressed inMand/or E oscillators, after a light pulse

at ZT21. From left to right, fly genotypes are (1) Mai179-Gal4/ UAS-Dcr2, (2) Mai179-Gal4/ UAS-Dcr2; jetRNAi/+, (3) Pdf-Gal4/ UAS-Dcr2; jetRNAi/+, (4) Mai179-

Gal4/ UAS-Dcr2; jetRNAi/Pdf-GAL80.

(D) Quantifications of TIM level. y axis shows the relative TIM level in LNds compared with the average level in three neighboring noncircadian neurons. TIM levels

are normalized to NLP controls. Error bars correspond to SEM. ****p < 0.0001 was determined by t test. Note that downregulating JET in only E oscillators does

not affect TIM degradation, but blocking JET expression in both M and E oscillators does. See also Figures S3 and S4.
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we cannot rule out that TIM degradation occurred with a slower

kinetics. In any case, we propose that after light pulses,

TIM degradation in E oscillators resets their molecular

pacemaker, which allows them to help the M oscillators to

resynchronize their own circadian pacemaker. The M oscillators

then readjust the whole circadian neural network. This bears

similarities with light synchronization in mammals. The Suprachi-

asmatic Nucleus (SCN), the mammalian neural circadian

pacemaker, receives light input through dedicated retinal

ganglion cells in the retina (Hattar et al., 2006). Cells in the core

of the SCN appear to be particularly sensitive to this light input.

They communicate with robust pacemaker neurons of the

shell, which then reset the whole circadian neural network (Yan

et al., 2007).

EXPERIMENTAL PROCEDURES

Protein Extraction and Western Blots

Flies were entrained to a standard LD cycle and frozen on the fourth day at the

indicated time points. For acute photic TIM degradation, flies were exposed to

a 10 min light pulse (1,500 lux) at ZT21 and returned to darkness for 1 hr.

Protein extraction and western blots were performed as described in Busza

et al. (2004).

Behavioral Monitoring and Analysis

Behavior under LL was monitored and analyzed as previously described

(Emery et al., 2000). To measure photic phase shifts, flies were entrained to

a LD cycle for 5 days and exposed to a 5 min light pulse (1,500 lux) at ZT15

and 21. They were thenmonitored in DD for 6 days. The phase of their behavior

was compared to nonpulsed controls. We used the off-set of subjective

evening activity because it is the most reliable phase marker across geno-

types. It is defined as the time at which the activity of a group of flies (averaged

from day 2–6 after light pulse) drops to 50% of peak value.

Whole-Mount Immunocytochemistry

Whole-mount immunohistochemistry for fly brains was done as previously

described (Zhang et al., 2010). All samples were viewed on a Zeiss LSM5

Pascal confocal microscope.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, and two tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2014.03.044.
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