8,790 research outputs found

    Evidence Against an Association Between Gamma-Ray Bursts and Type I Supernovae

    Get PDF
    We present a rigorous method, based on Bayesian inference, for calculating the odds favoring the hypothesis that any particular class of astronomical transients produce gamma-ray bursts over the hypothesis that they do not. We then apply this method to a sample of 83 Type Ia supernovae and a sample of 20 Type Ib-Ic supernovae. We find overwhelming odds against the hypothesis that all Type Ia supernovae produce gamma-ray bursts, whether at low redshift (109:110^{9}:1) or high-redshift (1012:110^{12}:1), and very large odds (6000:16000:1) against the hypothesis that all Type Ib, Ib/c, and Ic supernovae produce observable gamma-ray bursts. We find large odds (34:134:1) against the hypothesis that a fraction of Type Ia supernovae produce observable gamma-ray bursts, and moderate odds (6:16:1) against the hypothesis that a fraction of Type Ib-Ic supernovae produce observable bursts. We have also re-analyzed both a corrected version of the Wang & Wheeler sample of Type Ib-Ic SNe and our larger sample of 20 Type Ib-Ic SNe, using a generalization of their frequentist method. We find no significant evidence in either case of a correlation between Type Ib-Ic SNe and GRBs, consistent with the very strong evidence against such a correlation that we find from our Bayesian analysis.Comment: 45 pages, 2 PostScript figures. Uses AASTEX macros. Submitted to The Astrophysical Journa

    Coronal hole boundaries at small scales: IV. SOT view Magnetic field properties of small-scale transient brightenings in coronal holes

    Full text link
    We study the magnetic properties of small-scale transients in coronal hole. We found all brightening events are associated with bipolar regions and caused by magnetic flux emergence followed by cancellation with the pre-existing and newly emerging magnetic flux. In the coronal hole, 19 of 22 events have a single stable polarity which does not change its position in time. In eleven cases this is the dominant polarity. The dominant flux of the coronal hole form the largest concentration of magnetic flux in terms of size while the opposite polarity is distributed in small concentrations. In the coronal hole the number of magnetic elements of the dominant polarity is four times higher than the non-dominant one. The supergranulation configuration appears to preserve its general shape during approximately nine hours of observations although the large concentrations in the network did evolve and were slightly displaced, and their strength either increased or decreased. The emission fluctuations seen in the X-ray bright points are associated with reoccurring magnetic cancellation in the footpoints. Unique observations of an X-ray jet reveal similar magnetic behaviour in the footpoints, i.e. cancellation of the opposite polarity magnetic flux. We found that the magnetic flux cancellation rate during the jet is much higher than in bright points. Not all magnetic cancellations result in an X-ray enhancement, suggesting that there is a threshold of the amount of magnetic flux involved in a cancellation above which brightening would occur at X-ray temperatures. Our study demonstrates that the magnetic flux in coronal holes is continuously recycled through magnetic reconnection which is responsible for the formation of numerous small-scale transient events. The open magnetic flux forming the coronal-hole phenomenon is largely involved in these transient features.Comment: 19 pages, 18 figures, A&A in pres

    Gamma-Ray Bursts as a Probe of the Very High Redshift Universe

    Get PDF
    We show that, if many GRBs are indeed produced by the collapse of massive stars, GRBs and their afterglows provide a powerful probe of the very high redshift (z > 5) universe.Comment: To appear in Proc. of the 5th Huntsville Gamma-Ray Burst Symposium, 5 pages, LaTe

    Supersonic investigation of two dimensional hypersonic exhaust nozzles

    Get PDF
    An experimental investigation was conducted in the NASA Lewis 10 x 10 ft supersonic Wind Tunnel to determine the performance characteristics of 2D hypersonic exhaust nozzles/afterbodies at low supersonic conditions. Generally, this type of application requires a single expansion ramp nozzle (SERN) that is highly integrated with the airframe of the hypersonic vehicle. At design conditions (hypersonic speeds), the nozzle generally exhibits acceptable performance. At off-design conditions (transonic to mid-supersonic speeds), nozzle performance of a fixed geometry configuration is generally poor. Various 2-D nozzle configurations were tested at off-design conditions from Mach 2.0 to 3.5. Performance data is presented at nozzle pressure ratios from 1 to 35. Jet exhaust was simulated with high-pressure air. To study performance of different geometries, nozzle configurations were varied by interchanging the following model parts: internal upstream contour, expansion ramp, sidewalls, and cowl

    Coherent vibrations of submicron spherical gold shells in a photonic crystal

    Full text link
    Coherent acoustic radial oscillations of thin spherical gold shells of submicron diameter excited by an ultrashort optical pulse are observed in the form of pronounced modulations of the transient reflectivity on a subnanosecond time scale. Strong acousto-optical coupling in a photonic crystal enhances the modulation of the transient reflectivity up to 4%. The frequency of these oscillations is demonstrated to be in good agreement with Lamb theory of free gold shells.Comment: Error in Eqs.2 and 3 corrected; Tabl. I corrected; Fig.1 revised; a model that explains the dependence of the oscillation amplitude of the transient reflectivity with wavelength adde

    Proton imaging of stochastic magnetic fields

    Full text link
    Recent laser-plasma experiments report the existence of dynamically significant magnetic fields, whose statistical characterisation is essential for understanding the physical processes these experiments are attempting to investigate. In this paper, we show how a proton imaging diagnostic can be used to determine a range of relevant magnetic field statistics, including the magnetic-energy spectrum. To achieve this goal, we explore the properties of an analytic relation between a stochastic magnetic field and the image-flux distribution created upon imaging that field. We conclude that features of the beam's final image-flux distribution often display a universal character determined by a single, field-scale dependent parameter - the contrast parameter - which quantifies the relative size of the correlation length of the stochastic field, proton displacements due to magnetic deflections, and the image magnification. For stochastic magnetic fields, we establish the existence of four contrast regimes - linear, nonlinear injective, caustic and diffusive - under which proton-flux images relate to their parent fields in a qualitatively distinct manner. As a consequence, it is demonstrated that in the linear or nonlinear injective regimes, the path-integrated magnetic field experienced by the beam can be extracted uniquely, as can the magnetic-energy spectrum under a further statistical assumption of isotropy. This is no longer the case in the caustic or diffusive regimes. We also discuss complications to the contrast-regime characterisation arising for inhomogeneous, multi-scale stochastic fields, as well as limitations currently placed by experimental capabilities on extracting magnetic field statistics. The results presented in this paper provide a comprehensive description of proton images of stochastic magnetic fields, with applications for improved analysis of given proton-flux images.Comment: Main paper pp. 1-29; appendices pp. 30-84. 24 figures, 2 table

    On the Singularities of the Magnon S-matrix

    Get PDF
    We investigate the analytic structure of the magnon S-matrix in the spin-chain description of planar N=4{\cal N}=4 SUSY Yang-Mills/AdS5Ă—S5AdS_{5}\times S^{5} strings. Semiclassical analysis suggests that the exact S-matrix must have a large family of poles near the real axis in momentum space. In this article we show that these are double poles corresponding to the exchange of pairs of BPS magnons. Their locations in the complex plane are uniquely fixed by the known dispersion relation for the BPS particles. The locations precisely agree with the recent conjecture for the SS matrix by Beisert, Hernandez, Lopez, Eden and Staudacher (hep-th/0609044 and hep-th/0610251). These poles do not signal the presence of new bound states. In fact, a certain non-BPS localized classical solution, which was thought to give rise to new bound states, can actually decay into a pair of BPS magnons.Comment: 40 pages, 14 figures; typos corrected, references adde

    Previously Claimed(/Unclaimed) X-ray Emission Lines in High Resolution Afterglow Spectra

    Full text link
    We review the significance determination for emission lines in the Chandra HETGS spectrum for GRB020813, and we report on a search for additional lines in high resolution Chandra spectra. No previously unclaimed features are found. We also discuss the significance of lines sets reportedly discovered using XMM data for GRB011211 and GRB030227. We find that these features are likely of modest, though not negligible, significance.Comment: 4 pages, 1 figures, to appear in Santa Fe GRB Conference Proceedings, 200
    • …
    corecore