490 research outputs found

    Phase Transitions of Charged Scalars at Finite Temperature and Chemical Potential

    Full text link
    We calculate the grand canonical partition function at the one-loop level for scalar quantum electrodynamics at finite temperature and chemical potential. A classical background charge density with a charge opposite that of the scalars ensures the neutrality of the system. For low density systems we find evidence of a first order phase transition. We find upper and lower bounds on the transition temperature below which the charged scalars form a condensate. A first order phase transition may have consequences for helium-core white dwarf stars in which it has been argued that such a condensate of charged helium-4 nuclei could exist.Comment: 20 pages, 3 figures. Version accepted for publication in JHE

    The Impact of NOD2 Variants on Fecal Microbiota in Crohn's Disease and Controls Without Gastrointestinal Disease.

    Get PDF
    BACKGROUND/AIMS: Current models of Crohn's disease (CD) describe an inappropriate immune response to gut microbiota in genetically susceptible individuals. NOD2 variants are strongly associated with development of CD, and NOD2 is part of the innate immune response to bacteria. This study aimed to identify differences in fecal microbiota in CD patients and non-IBD controls stratified by NOD2 genotype. METHODS: Patients with CD and non-IBD controls of known NOD2 genotype were identified from patients in previous UK IBD genetics studies and the Cambridge bioresource (genotyped/phenotyped volunteers). Individuals with known CD-associated NOD2 mutations were matched to those with wild-type genotype. We obtained fecal samples from patients in clinical remission with low fecal calprotectin (<250 µg/g) and controls without gastrointestinal disease. After extracting DNA, the V1-2 region of 16S rRNA genes were polymerase chain reaction (PCR)-amplified and sequenced. Analysis was undertaken using the mothur package. Volatile organic compounds (VOC) were also measured. RESULTS: Ninety-one individuals were in the primary analysis (37 CD, 30 bioresource controls, and 24 household controls). Comparing CD with nonIBD controls, there were reductions in bacterial diversity, Ruminococcaceae, Rikenellaceae, and Christensenellaceae and an increase in Enterobacteriaceae. No significant differences could be identified in microbiota by NOD2 genotype, but fecal butanoic acid was higher in Crohn's patients carrying NOD2 mutations. CONCLUSIONS: In this well-controlled study of NOD2 genotype and fecal microbiota, we identified no significant genotype-microbiota associations. This suggests that the changes associated with NOD2 genotype might only be seen at the mucosal level, or that environmental factors and prior inflammation are the predominant determinant of the observed dysbiosis in gut microbiota.Funding was supported by CORE, the Digestive Diseases Foundation and the Wellcome Trust [grant number 097943 to NAK, 093885 to CAL and 098051 to Alan W Walker and Julian Parkhill . Dr. Walker receives core funding support from the Scottish Government Rural and Environmental Science and Analysis Service (RESAS). We also acknowledge the NIHR Biomedical Research Centre awards to Addenbrooke’s Hospital/University of Cambridge School of Clinical Medicine and acknowledge the NIHR Newcastle Biomedical Research Centre

    Quantum Acoustics with Surface Acoustic Waves

    Full text link
    It has recently been demonstrated that surface acoustic waves (SAWs) can interact with superconducting qubits at the quantum level. SAW resonators in the GHz frequency range have also been found to have low loss at temperatures compatible with superconducting quantum circuits. These advances open up new possibilities to use the phonon degree of freedom to carry quantum information. In this paper, we give a description of the basic SAW components needed to develop quantum circuits, where propagating or localized SAW-phonons are used both to study basic physics and to manipulate quantum information. Using phonons instead of photons offers new possibilities which make these quantum acoustic circuits very interesting. We discuss general considerations for SAW experiments at the quantum level and describe experiments both with SAW resonators and with interaction between SAWs and a qubit. We also discuss several potential future developments.Comment: 14 pages, 12 figure

    New Mechanics of Traumatic Brain Injury

    Full text link
    The prediction and prevention of traumatic brain injury is a very important aspect of preventive medical science. This paper proposes a new coupled loading-rate hypothesis for the traumatic brain injury (TBI), which states that the main cause of the TBI is an external Euclidean jolt, or SE(3)-jolt, an impulsive loading that strikes the head in several coupled degrees-of-freedom simultaneously. To show this, based on the previously defined covariant force law, we formulate the coupled Newton-Euler dynamics of brain's micro-motions within the cerebrospinal fluid and derive from it the coupled SE(3)-jolt dynamics. The SE(3)-jolt is a cause of the TBI in two forms of brain's rapid discontinuous deformations: translational dislocations and rotational disclinations. Brain's dislocations and disclinations, caused by the SE(3)-jolt, are described using the Cosserat multipolar viscoelastic continuum brain model. Keywords: Traumatic brain injuries, coupled loading-rate hypothesis, Euclidean jolt, coupled Newton-Euler dynamics, brain's dislocations and disclinationsComment: 18 pages, 1 figure, Late

    Scattering Theory and PT\mathcal{P}\mathcal{T}-Symmetry

    Full text link
    We outline a global approach to scattering theory in one dimension that allows for the description of a large class of scattering systems and their P\mathcal{P}-, T\mathcal{T}-, and PT\mathcal{P}\mathcal{T}-symmetries. In particular, we review various relevant concepts such as Jost solutions, transfer and scattering matrices, reciprocity principle, unidirectional reflection and invisibility, and spectral singularities. We discuss in some detail the mathematical conditions that imply or forbid reciprocal transmission, reciprocal reflection, and the presence of spectral singularities and their time-reversal. We also derive generalized unitarity relations for time-reversal-invariant and PT\mathcal{P}\mathcal{T}-symmetric scattering systems, and explore the consequences of breaking them. The results reported here apply to the scattering systems defined by a real or complex local potential as well as those determined by energy-dependent potentials, nonlocal potentials, and general point interactions.Comment: Slightly expanded revised version, 38 page

    Directed cell migration in the presence of obstacles

    Get PDF
    BACKGROUND: Chemotactic movement is a common feature of many cells and microscopic organisms. In vivo, chemotactic cells have to follow a chemotactic gradient and simultaneously avoid the numerous obstacles present in their migratory path towards the chemotactic source. It is not clear how cells detect and avoid obstacles, in particular whether they need a specialized biological mechanism to do so. RESULTS: We propose that cells can sense the presence of obstacles and avoid them because obstacles interfere with the chemical field. We build a model to test this hypothesis and find that this naturally enables efficient at-a-distance sensing to be achieved with no need for a specific and active obstacle-sensing mechanism. We find that (i) the efficiency of obstacle avoidance depends strongly on whether the chemotactic chemical reacts or remains unabsorbed at the obstacle surface. In particular, it is found that chemotactic cells generally avoid absorbing barriers much more easily than non-absorbing ones. (ii) The typically low noise in a cell's motion hinders the ability to avoid obstacles. We also derive an expression estimating the typical distance traveled by chemotactic cells in a 3D random distribution of obstacles before capture; this is a measure of the distance over which chemotaxis is viable as a means of directing cells from one point to another in vivo. CONCLUSION: Chemotactic cells, in many cases, can avoid obstacles by simply following the spatially perturbed chemical gradients around obstacles. It is thus unlikely that they have developed specialized mechanisms to cope with environments having low to moderate concentrations of obstacles

    Study protocol of cost-effectiveness and cost-utility of a biopsychosocial multidisciplinary intervention in the evolution of non-specific sub-acute low back pain in the working population: cluster randomised trial.

    Get PDF
    This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Low back pain (LBP), with high incidence and prevalence rate, is one of the most common reasons to consult the health system and is responsible for a significant amount of sick leave, leading to high health and social costs. The objective of the study is to assess the cost-effectiveness and cost-utility analysis of a multidisciplinary biopsychosocial educational group intervention (MBEGI) of non-specific sub-acute LBP in comparison with the usual care in the working population recruited in primary healthcare centres. Methods/design: The study design is a cost-effectiveness and cost-utility analysis of a MBEGI in comparison with the usual care of non-specific sub-acute LBP.Measures on effectiveness and costs of both interventions will be obtained from a cluster randomised controlled clinical trial carried out in 38 Catalan primary health care centres, enrolling 932 patients between 18 and 65 years old with a diagnosis of non-specific sub-acute LBP. Effectiveness measures are: pharmaceutical treatments, work sick leave (% and duration in days), Roland Morris disability, McGill pain intensity, Fear Avoidance Beliefs (FAB) and Golberg Questionnaires. Utility measures will be calculated from the SF-12. The analysis will be performed from a social perspective. The temporal horizon is at 3 months (change to chronic LBP) and 12 months (evaluate the outcomes at long term. Assessment of outcomes will be blinded and will follow the intention-to-treat principle. Discussion: We hope to demonstrate the cost-effectiveness and cost-utility of MBEGI, see an improvement in the patients' quality of life, achieve a reduction in the duration of episodes and the chronicity of non-specific low back pain, and be able to report a decrease in the social costs. If the intervention is cost-effectiveness and cost-utility, it could be applied to Primary Health Care Centres. Trial registration: ISRCTN: ISRCTN5871969

    Generalized Flows around Neutron Stars

    Full text link
    In this chapter, we present a brief and non-exhaustive review of the developments of theoretical models for accretion flows around neutron stars. A somewhat chronological summary of crucial observations and modelling of timing and spectral properties are given in sections 2 and 3. In section 4, we argue why and how the Two-Component Advective Flow (TCAF) solution can be applied to the cases of neutron stars when suitable modifications are made for the NSs. We showcase some of our findings from Monte Carlo and Smoothed Particle Hydrodynamic simulations which further strengthens the points raised in section 4. In summary, we remark on the possibility of future works using TCAF for both weakly magnetic and magnetic Neutron Stars.Comment: 15 pages, 7 figures. arXiv admin note: text overlap with arXiv:1901.0084

    An Integrated Bioinformatics Approach Identifies Elevated Cyclin E2 Expression and E2F Activity as Distinct Features of Tamoxifen Resistant Breast Tumors

    Get PDF
    Approximately half of estrogen receptor (ER) positive breast tumors will fail to respond to endocrine therapy. Here we used an integrative bioinformatics approach to analyze three gene expression profiling data sets from breast tumors in an attempt to uncover underlying mechanisms contributing to the development of resistance and potential therapeutic strategies to counteract these mechanisms. Genes that are differentially expressed in tamoxifen resistant vs. sensitive breast tumors were identified from three different publically available microarray datasets. These differentially expressed (DE) genes were analyzed using gene function and gene set enrichment and examined in intrinsic subtypes of breast tumors. The Connectivity Map analysis was utilized to link gene expression profiles of tamoxifen resistant tumors to small molecules and validation studies were carried out in a tamoxifen resistant cell line. Despite little overlap in genes that are differentially expressed in tamoxifen resistant vs. sensitive tumors, a high degree of functional similarity was observed among the three datasets. Tamoxifen resistant tumors displayed enriched expression of genes related to cell cycle and proliferation, as well as elevated activity of E2F transcription factors, and were highly correlated with a Luminal intrinsic subtype. A number of small molecules, including phenothiazines, were found that induced a gene signature in breast cancer cell lines opposite to that found in tamoxifen resistant vs. sensitive tumors and the ability of phenothiazines to down-regulate cyclin E2 and inhibit proliferation of tamoxifen resistant breast cancer cells was validated. Our findings demonstrate that an integrated bioinformatics approach to analyze gene expression profiles from multiple breast tumor datasets can identify important biological pathways and potentially novel therapeutic options for tamoxifen-resistant breast cancers

    Characterization of AKT independent effects of the synthetic AKT inhibitors SH-5 and SH-6 using an integrated approach combining transcriptomic profiling and signaling pathway perturbations

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Signal transduction processes mediated by phosphatidyl inositol phosphates affect a broad range of cellular processes such as cell cycle progression, migration and cell survival. The protein kinase AKT is one of the major effectors in this signaling network. Chronic AKT activation contributes to oncogenic transformation and tumor development. Therefore, analogs of phosphatidyl inositol phosphates (PIAs) were designed as new small drugs to block AKT activity for cancer treatment. Here we characterize the biological effects of the PIAs SH-5 and SH-6 in colorectal cancer cell lines.</p> <p>Methods</p> <p>Serum-starved or serum-supplemented human colorectal cancer cell lines SW480, HT29 and HCT116 were exposed to SH-5 and SH-6. AKT activation was determined by western blotting. Cell viability was assessed using a colorimetric XTT-based assay, apoptosis and cell cycle changes were monitored by FACS analysis. The dynamics of cell morphology alterations was evaluated by confocal and time-lapse microscopy. Transcriptional changes due to inhibitor treatment were analyzed using Affymetrix HG-U133A microarrays and RT-PCR.</p> <p>Results</p> <p>While the PIAs clearly reduce AKT phosphorylation in serum starved cells, we did not observe a significant reduction under serum supplemented conditions, giving us the opportunity to analyze AKT independent effects of these compounds. Both inhibitors induce broadly the same morphological alterations, in particular changes in cell shape and formation of intracellular vesicles. Moreover, we observed the induction of binucleated cells specifically in the SW480 cell line. Gene expression analysis revealed transcriptional alterations, which are mostly cell line specific. In accordance to the phenotype we found a gene group associated with mitosis and spindle organization down regulated in SW480 cells, but not in the other cell lines. A bioinformatics analysis using the Connectivity Map linked the gene expression pattern of the inhibitor treated SW480 cells to PKC signaling. Using confocal laser scanning microscopy and time lapse recording we identified a specific defect in the last step of the cytokinesis as responsible for the binucleation.</p> <p>Conclusions</p> <p>The PIAs SH-5 and SH-6 impinge on additional cellular targets apart from AKT in colorectal cancer cells. The effects are mostly cell line specific and have an influence at the outcome of the treatment. In view of potential clinical trials it will be necessary to take these diverse effects into consideration to optimize patient treatment.</p
    corecore