15,501 research outputs found

    Recovery of continuous wave squeezing at low frequencies

    Full text link
    We propose and demonstrate a system that produces squeezed vacuum using a pair of optical parametric amplifiers. This scheme allows the production of phase sidebands on the squeezed vacuum which facilitate phase locking in downstream applications. We observe strong, stably locked, continuous wave vacuum squeezing at frequencies as low as 220 kHz. We propose an alternative resonator configuration to overcome low frequency squeezing degradation caused by the optical parametric amplifiers.Comment: 9 pages, 4 figure

    Influence of experience and training on dental students’ examination performance regarding panoramic images

    Get PDF
    Physician training has greatly benefitted from insights gained in understanding the manner in which experts search medical images for abnormalities. The aims of this study were to compare the search patterns of 30 fourth-year dental students and 15 certified oral and maxillofacial radiologists (OMRs) over panoramic images and to determine the most robust variables for future studies involving image visualization. Eye tracking was used to capture the eye movement patterns of both subject groups when examining 20 panoramic images classified as normal or abnormal. Abnormal images were further subclassified as having an obvious, intermediate, or subtle abnormality. The images were presented in random order to each participant, and data were collected on duration of the participants’ observations and total distance tracked, time to first eye fixation, and total duration and numbers of fixations on and off the area of interest (AOI). The results showed that the OMRs covered greater distances than the dental students (p<0.001) for normal images. For images of pathosis, the OMRs required less total time (p<0.001), made fewer eye fixations (p<0.01) with fewer saccades (p<0.001) than the students, and required less time before making the first fixation on the AOI (p<0.01). Furthermore, the OMRs covered less distance (p<0.001) than the dental students for obvious pathoses. For investigations of images of pathosis, time to first fixation is a robust parameter in predicting ability. For images with different levels of subtlety of pathoses, the number of fixations, total time spent, and numbers of revisits are important parameters to analyze when comparing observer groups with different levels of experience

    Gradient echo memory in an ultra-high optical depth cold atomic ensemble

    Get PDF
    Quantum memories are an integral component of quantum repeaters - devices that will allow the extension of quantum key distribution to communication ranges beyond that permissible by passive transmission. A quantum memory for this application needs to be highly efficient and have coherence times approaching a millisecond. Here we report on work towards this goal, with the development of a 87^{87}Rb magneto-optical trap with a peak optical depth of 1000 for the D2 F=2→F′=3F=2 \rightarrow F'=3 transition using spatial and temporal dark spots. With this purpose-built cold atomic ensemble to implement the gradient echo memory (GEM) scheme. Our data shows a memory efficiency of 80±280\pm 2% and coherence times up to 195 μ\mus, which is a factor of four greater than previous GEM experiments implemented in warm vapour cells.Comment: 15 pages, 5 figure

    The Absorptive Extra Dimensions

    Full text link
    It is well known that gravity and neutrino oscillation can be used to probe large extra dimensions in a braneworld scenario. We argue that neutrino oscillation remains a useful probe even when the extra dimensions are small, because the brane-bulk coupling is likely to be large. Neutrino oscillation in the presence of a strong brane-bulk coupling is vastly different from the usual case of a weak coupling. In particular, some active neutrinos could be absorbed by the bulk when they oscillate from one kind to another, a signature which can be taken as the presence of an extra dimension. In a very large class of models which we shall discuss, the amount of absorption for all neutrino oscillations is controlled by a single parameter, a property which distinguishes extra dimensions from other mechanisms for losing neutrino fluxes.Comment: Introduction enlarged; conclusions added. To appear in Phys. Rev.

    Electromagnetically induced transparency and four-wave mixing in a cold atomic ensemble with large optical depth

    Get PDF
    We report on the delay of optical pulses using electromagnetically induced transparency in an ensemble of cold atoms with an optical depth exceeding 500. To identify the regimes in which four-wave mixing impacts on EIT behaviour, we conduct the experiment in both rubidium 85 and rubidium 87. Comparison with theory shows excellent agreement in both isotopes. In rubidium 87, negligible four-wave mixing was observed and we obtained one pulse-width of delay with 50% efficiency. In rubidium 85, four-wave-mixing contributes to the output. In this regime we achieve a delay-bandwidth product of 3.7 at 50% efficiency, allowing temporally multimode delay, which we demonstrate by compressing two pulses into the memory medium.Comment: 8 pages, 6 figure

    Quasi-dark Mode in a Metamaterial for Analogous Electromagnetically-induced Transparency

    Full text link
    We study a planar metamaterial supporting electromagnetically-induced transparency (EIT)-like effect by exploiting the coupling between bright and quasi-dark eigenmodes. The specific design of such a metamaterial consists of a cut-wire (CW) and a single-gap split-ring resonator (SRR). From the numerical and the analytical results we demonstrate that the response of SRR, which is weakly excited by external electric field, is mitigated to be a quasi-dark eigenmode in the presence of strongly radiative CW. This result suggests more relaxed conditions for the realization of devices utilizing the EIT-like effects in metamaterial, and thereby widens the possibilities for many different structural implementations.Comment: 11 pages, 4 figure

    Higher-order non-symmetric counterterms in pure Yang-Mills theory

    Full text link
    We analyze the restoration of the Slavnov-Taylor (ST) identities for pure massless Yang-Mills theory in the Landau gauge within the BPHZL renormalization scheme with IR regulator. We obtain the most general form of the action-like part of the symmetric regularized action, obeying the relevant ST identities and all other relevant symmetries of the model, to all orders in the loop expansion. We also give a cohomological characterization of the fulfillment of BPHZL IR power-counting criterion, guaranteeing the existence of the limit where the IR regulator goes to zero. The technique analyzed in this paper is needed in the study of the restoration of the ST identities for those models, like the MSSM, where massless particles are present and no invariant regularization scheme is known to preserve the full set of ST identities of the theory.Comment: Final version published in the journa
    • …
    corecore