23,566 research outputs found
Magnetic Trapping of Cold Bromine Atoms
Magnetic trapping of bromine atoms at temperatures in the milliKelvin regime
is demonstrated for the first time. The atoms are produced by photodissociation
of Br molecules in a molecular beam. The lab-frame velocity of Br atoms is
controlled by the wavelength and polarization of the photodissociation laser.
Careful selection of the wavelength results in one of the pair of atoms having
sufficient velocity to exactly cancel that of the parent molecule, and it
remains stationary in the lab frame. A trap is formed at the null point between
two opposing neodymium permanent magnets. Dissociation of molecules at the
field minimum results in the slowest fraction of photofragments remaining
trapped. After the ballistic escape of the fastest atoms, the trapped slow
atoms are only lost by elastic collisions with the chamber background gas. The
measured loss rate is consistent with estimates of the total cross section for
only those collisions transferring sufficient kinetic energy to overcome the
trapping potential
Analytic treatment of CRIB Quantum Memories for Light using Two-level Atoms
It has recently been discovered that the optical analogue of a gradient echo
in an optically thick material could form the basis of a optical memory that is
both completely efficient and noise free. Here we present analytical
calculation showing this is the case. There is close analogy between the
operation of the memory and an optical system with two beam splitters. We can
use this analogy to calculate efficiencies as a function of optical depth for a
number of quantum memory schemes based on controlled inhomogeneous broadening.
In particular we show that multiple switching leads to a net 100% retrieval
efficiency for the optical gradient echo even in the optically thin case.Comment: 10 page
Improvement of parametric stability margin under pole assignment
In this paper, the improvement of the parametric stability margin of state-space uncertain systems via a maximization formulation under the constraints of pole assignment is investigated. The class of systems considered is where the uncertainty may be modeled as the, possibly nonlinear, variation of a parameter appearing in the entries of the system and input matrices. The continuity and differentiability properties of the stability margin are discussed. A gradient-based approach is presented for the improvement of the stability margin and a compact formula to compute the gradient is provided. Numerical examples are used to demonstrate the effectiveness of the approach.published_or_final_versio
Free Form Lensing Implications for the Collision of Dark Matter and Gas in the Frontier Fields Cluster MACSJ0416.1-2403
We present a free form mass reconstruction of the massive lensing cluster
MACSJ0416.1-2403 using the latest Hubble Frontier Fields data. Our model
independent method finds that the extended lensing pattern is generated by two
elongated, closely projected clusters of similar mass. Our lens model
identifies new lensed images with which we improve the accuracy of the dark
matter distribution. We find that the bimodal mass distribution is nearly
coincident with the bimodal X-ray emission, but with the two dark matter peaks
lying closer together than the centroids of the X-ray emisison. We show this
can be achieved if the collision has occurred close to the plane and such that
the cores are deflected around each other. The projected mass profiles of both
clusters are well constrained because of the many interior lensed images,
leading to surprisingly flat mass profiles of both components in the region
15-100 kpc. We discuss the extent to which this may be generated by tidal
forces in our dynamical model which are large during an encounter of this type
as the cores "graze" each other. The relative velocity between the two cores is
estimated to be about 1200 km/s and mostly along the line of sight so that our
model is consistent with the relative redshift difference between the two cD
galaxies (dz = 0.04).Comment: 22 pages, 18 figures, 2 table
Generalized Background-Field Method
The graphical method discussed previously can be used to create new gauges
not reachable by the path-integral formalism. By this means a new gauge is
designed for more efficient two-loop QCD calculations. It is related to but
simpler than the ordinary background-field gauge, in that even the triple-gluon
vertices for internal lines contain only four terms, not the usual six. This
reduction simplifies the calculation inspite of the necessity to include other
vertices for compensation. Like the ordinary background-field gauge, this
generalized background-field gauge also preserves gauge invariance of the
external particles. As a check of the result and an illustration for the
reduction in labour, an explicit calculation of the two-loop QCD
-function is carried out in this new gauge. It results in a saving of
45% of computation compared to the ordinary background-field gauge.Comment: 17 pages, Latex, 18 figures in Postscrip
XUV Frequency Combs via Femtosecond Enhancement Cavities
We review the current state of tabletop extreme ultraviolet (XUV) sources
based on high harmonic generation (HHG) in femtosecond enhancement cavities
(fsEC). Recent developments have enabled generation of high photon flux (1014
photons/sec) in the XUV, at high repetition rates (>50 MHz) and spanning the
spectral region from 40 nm - 120 nm. This level of performance has enabled
precision spectroscopy with XUV frequency combs and promises further
applications in XUV spectroscopic and photoemission studies. We discuss the
theory of operation and experimental details of the fsEC and XUV generation
based on HHG, including current technical challenges to increasing the photon
flux and maximum photon energy produced by this type of system. Current and
future applications for these sources are also discussed.Comment: invited review article, 38 page
- …