27,130 research outputs found

    Origin of Discrepancies in Inelastic Electron Tunneling Spectra of Molecular Junctions

    Full text link
    We report inelastic electron tunneling spectroscopy (IETS) of multilayer molecular junctions with and without incorporated metal nano-particles. The incorporation of metal nanoparticles into our devices leads to enhanced IET intensity and a modified line-shape for some vibrational modes. The enhancement and line-shape modification are both the result of a low lying hybrid metal nanoparticle-molecule electronic level. These observations explain the apparent discrepancy between earlier IETS measurements of alkane thiolate junctions by Kushmerick \emph{et al.} [Nano Lett. \textbf{4}, 639 (2004)] and Wang \emph{et al.} [Nano Lett. \textbf{4}, 643 (2004)].Comment: 4 pages, 4 figures accepted for publication in Physical Review Letter

    String Organization of Field Theories: Duality and Gauge Invariance

    Full text link
    String theories should reduce to ordinary four-dimensional field theories at low energies. Yet the formulation of the two are so different that such a connection, if it exists, is not immediately obvious. With the Schwinger proper-time representation, and the spinor helicity technique, it has been shown that field theories can indeed be written in a string-like manner, thus resulting in simplifications in practical calculations, and providing novel insights into gauge and gravitational theories. This paper continues the study of string organization of field theories by focusing on the question of local duality. It is shown that a single expression for the sum of many diagrams can indeed be written for QED, thereby simulating the duality property in strings. The relation between a single diagram and the dual sum is somewhat analogous to the relation between a old- fashioned perturbation diagram and a Feynman diagram. Dual expressions are particularly significant for gauge theories because they are gauge invariant while expressions for single diagrams are not.Comment: 20 pages in Latex, including seven figures in postscrip

    The Low Column Density Lyman-alpha Forest

    Get PDF
    We develop an analytical method based on the lognormal approximation to compute the column density distribution of the Lyman-alpha forest in the low column density limit. We compute the column density distributions for six different cosmological models and found that the standard, COBE-normalized CDM model cannot fit the observations of the Lyman-alpha forest at z=3. The amplitude of the fluctuations in that model has to be lowered by a factor of almost 3 to match observations. However, the currently viable cosmological models like the lightly tilted COBE-normalized CDM+Lambda model, the CHDM model with 20% neutrinos, and the low-amplitude Standard CDM model are all in agreement with observations, to within the accuracy of our approximation, for the value of the cosmological baryon density at or higher than the old Standard Bing Bang Nucleosynthesis value of 0.0125 for the currently favored value of the ionizing radiation intensity. With the low value for the baryon density inferred by Hogan & Rugers (1996), the models can only marginally match observations.Comment: three postscript figures included, submitted to ApJ

    Poles of regular quaternionic functions

    Full text link
    This paper studies the singularities of Cullen-regular functions of one quaternionic variable. The quaternionic Laurent series prove to be Cullen-regular. The singularities of Cullen-regular functions are thus classified as removable, essential or poles. The quaternionic analogues of meromorphic complex functions, called semiregular functions, turn out to be quotients of Cullen-regular functions with respect to an appropriate division operation. This allows a detailed study of the poles and their distribution.Comment: 14 page
    corecore