28,149 research outputs found
Recommended from our members
Using infrared thermography for monitoring thermal efficiency of buildings - case studies from Nottingham Trent University
Global warming and the continuous increase of energy cost are driving the need for reducing energy consumption. Buildings are responsible for approximately 50% of the UK energy consumption. Major part of this consumption is for heating and air conditioning of buildings. Nottingham Trent University is a leading university in the UK in relation to improving the performance of its buildings in order to improve insulation and energy consumption. The experimental case studies presented in this paper highlights some of the new measures taken to reduce energy consumption and enhance the sustainability of the University buildings. Infrared thermography is used to evaluate insulation measures and energy performance. The results indicate that enhanced insulation combined with modern sustainable technologies can significantly reduce energy consumption
Origin of Discrepancies in Inelastic Electron Tunneling Spectra of Molecular Junctions
We report inelastic electron tunneling spectroscopy (IETS) of multilayer
molecular junctions with and without incorporated metal nano-particles. The
incorporation of metal nanoparticles into our devices leads to enhanced IET
intensity and a modified line-shape for some vibrational modes. The enhancement
and line-shape modification are both the result of a low lying hybrid metal
nanoparticle-molecule electronic level. These observations explain the apparent
discrepancy between earlier IETS measurements of alkane thiolate junctions by
Kushmerick \emph{et al.} [Nano Lett. \textbf{4}, 639 (2004)] and Wang \emph{et
al.} [Nano Lett. \textbf{4}, 643 (2004)].Comment: 4 pages, 4 figures accepted for publication in Physical Review
Letter
Recommended from our members
Identification of integrin drug targets for 17 solid tumor types.
Integrins are contributors to remodeling of the extracellular matrix and cell migration. Integrins participate in the assembly of the actin cytoskeleton, regulate growth factor signaling pathways, cell proliferation, and control cell motility. In solid tumors, integrins are involved in promoting metastasis to distant sites, and angiogenesis. Integrins are a key target in cancer therapy and imaging. Integrin antagonists have proven successful in halting invasion and migration of tumors. Overexpressed integrins are prime anti-cancer drug targets. To streamline the development of specific integrin cancer therapeutics, we curated data to predict which integrin heterodimers are pausible therapeutic targets against 17 different solid tumors. Computational analysis of The Cancer Genome Atlas (TCGA) gene expression data revealed a set of integrin targets that are differentially expressed in tumors. Filtered by FPKM (Fragments Per Kilobase of transcript per Million mapped reads) expression level, overexpressed subunits were paired into heterodimeric protein targets. By comparing the RNA-seq differential expression results with immunohistochemistry (IHC) data, overexpressed integrin subunits were validated. Biologics and small molecule drug compounds against these identified overexpressed subunits and heterodimeric receptors are potential therapeutics against these cancers. In addition, high-affinity and high-specificity ligands against these integrins can serve as efficient vehicles for delivery of cancer drugs, nanotherapeutics, or imaging probes against cancer
Robust filtering for stochastic genetic regulatory networks with time-varying delay
This is the post print version of the article. The official published version can be obtained from the link - Copyright 2009 Elsevier LtdThis paper addresses the robust filtering problem for a class of linear genetic regulatory networks (GRNs) with stochastic disturbances, parameter uncertainties and time delays. The parameter uncertainties are assumed to reside in a polytopic region, the stochastic disturbance is state-dependent described by a scalar Brownian motion, and the time-varying delays enter into both the translation process and the feedback regulation process. We aim to estimate the true concentrations of mRNA and protein by designing a linear filter such that, for all admissible time delays, stochastic disturbances as well as polytopic uncertainties, the augmented state estimation dynamics is exponentially mean square stable with an expected decay rate. A delay-dependent linear matrix inequality (LMI) approach is first developed to derive sufficient conditions that guarantee the exponential stability of the augmented dynamics, and then the filter gains are parameterized in terms of the solution to a set of LMIs. Note that LMIs can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures.This work was supported in part by the Biotechnology and Biological Sciences Research Council (BBSRC) of the U.K. under Grants BB/C506264/1 and 100/EGM17735, an International Joint Project sponsored by the Royal Society of the U.K., the Research Grants Council of Hong Kong under Grant HKU 7031/06P, the National Natural Science Foundation of China under Grant 60804028, and the Alexander von Humboldt Foundation of Germany
The Low Column Density Lyman-alpha Forest
We develop an analytical method based on the lognormal approximation to
compute the column density distribution of the Lyman-alpha forest in the low
column density limit. We compute the column density distributions for six
different cosmological models and found that the standard, COBE-normalized CDM
model cannot fit the observations of the Lyman-alpha forest at z=3. The
amplitude of the fluctuations in that model has to be lowered by a factor of
almost 3 to match observations. However, the currently viable cosmological
models like the lightly tilted COBE-normalized CDM+Lambda model, the CHDM model
with 20% neutrinos, and the low-amplitude Standard CDM model are all in
agreement with observations, to within the accuracy of our approximation, for
the value of the cosmological baryon density at or higher than the old Standard
Bing Bang Nucleosynthesis value of 0.0125 for the currently favored value of
the ionizing radiation intensity. With the low value for the baryon density
inferred by Hogan & Rugers (1996), the models can only marginally match
observations.Comment: three postscript figures included, submitted to ApJ
String Organization of Field Theories: Duality and Gauge Invariance
String theories should reduce to ordinary four-dimensional field theories at
low energies. Yet the formulation of the two are so different that such a
connection, if it exists, is not immediately obvious. With the Schwinger
proper-time representation, and the spinor helicity technique, it has been
shown that field theories can indeed be written in a string-like manner, thus
resulting in simplifications in practical calculations, and providing novel
insights into gauge and gravitational theories. This paper continues the study
of string organization of field theories by focusing on the question of local
duality. It is shown that a single expression for the sum of many diagrams can
indeed be written for QED, thereby simulating the duality property in strings.
The relation between a single diagram and the dual sum is somewhat analogous to
the relation between a old- fashioned perturbation diagram and a Feynman
diagram. Dual expressions are particularly significant for gauge theories
because they are gauge invariant while expressions for single diagrams are not.Comment: 20 pages in Latex, including seven figures in postscrip
Poles of regular quaternionic functions
This paper studies the singularities of Cullen-regular functions of one
quaternionic variable. The quaternionic Laurent series prove to be
Cullen-regular. The singularities of Cullen-regular functions are thus
classified as removable, essential or poles. The quaternionic analogues of
meromorphic complex functions, called semiregular functions, turn out to be
quotients of Cullen-regular functions with respect to an appropriate division
operation. This allows a detailed study of the poles and their distribution.Comment: 14 page
Filtering for nonlinear genetic regulatory networks with stochastic disturbances
In this paper, the filtering problem is investigated for nonlinear genetic regulatory networks with stochastic disturbances and time delays, where the nonlinear function describing the feedback regulation is assumed to satisfy the sector condition, the stochastic perturbation is in the form of a scalar Brownian motion, and the time delays exist in both the translation process and the feedback regulation process. The purpose of the addressed filtering problem is to estimate the true concentrations of the mRNA and protein. Specifically, we are interested in designing a linear filter such that, in the presence of time delays, stochastic disturbances as well as sector nonlinearities, the filtering dynamics of state estimation for the stochastic genetic regulatory network is exponentially mean square stable with a prescribed decay rate lower bound beta. By using the linear matrix inequality (LMI) technique, sufficient conditions are first derived for ensuring the desired filtering performance for the gene regulatory model, and the filter gain is then characterized in terms of the solution to an LMI, which can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures
- …